Solveeit Logo

Question

Question: If a<sup>2</sup> + b<sup>2</sup> + c<sup>2</sup> + ab + bc + ca ≤ 0 ∀ a, b, c ∈ R, then value of the...

If a2 + b2 + c2 + ab + bc + ca ≤ 0 ∀ a, b, c ∈ R, then value of the determinant (a+b+2)2a2+b211(b+c+2)2b2+c2c2+a21(c+a+2)2\left| \begin{matrix} (a + b + 2)^{2} & a^{2} + b^{2} & 1 \\ 1 & (b + c + 2)^{2} & b^{2} + c^{2} \\ c^{2} + a^{2} & 1 & (c + a + 2)^{2} \end{matrix} \right|

Equals

A

65

B

a2 + b2 + c2 + 31

C

4(a2 + b2 + c2)

D

0

Answer

65

Explanation

Solution

a2 +b2 + c2 + ab + bc + ca ≤ 0

2a2 + 2b2 + 2c2 + 2ab + 2bc + 2ca ≤ 0

(a + b)2 + (b + c)2 + (c + a)2 ≤ 0 ⇒ a + b = b + c = c + a = 0 ⇒ a = b = c = 0

∆ = 401140014\left| \begin{matrix} 4 & 0 & 1 \\ 1 & 4 & 0 \\ 0 & 1 & 4 \end{matrix} \right|= 65