Question
Question: If a<sup>2</sup> + b<sup>2</sup> + c<sup>2</sup> + ab + bc + ca ≤ 0 ∀ a, b, c ∈ R, then value of the...
If a2 + b2 + c2 + ab + bc + ca ≤ 0 ∀ a, b, c ∈ R, then value of the determinant (a+b+2)21c2+a2a2+b2(b+c+2)211b2+c2(c+a+2)2
Equals
A
65
B
a2 + b2 + c2 + 31
C
4(a2 + b2 + c2)
D
0
Answer
65
Explanation
Solution
a2 +b2 + c2 + ab + bc + ca ≤ 0
2a2 + 2b2 + 2c2 + 2ab + 2bc + 2ca ≤ 0
(a + b)2 + (b + c)2 + (c + a)2 ≤ 0 ⇒ a + b = b + c = c + a = 0 ⇒ a = b = c = 0
∆ = 410041104= 65