Solveeit Logo

Question

Question: If A<sup>2</sup> = 8A + kI where A = \(\begin{bmatrix} 1 & 0 \\ - 1 & 7 \end{bmatrix}\) then k is :...

If A2 = 8A + kI where A = $\begin{bmatrix} 1 & 0 \

  • 1 & 7 \end{bmatrix}$ then k is :
A

7

B

–7

C

1

D

–1

Answer

–7

Explanation

Solution

[1,01,7]\left[ \begin{array} { c c } 1 , & 0 \\ - 1 , & 7 \end{array} \right] [1,01,7]\left[ \begin{array} { c c } 1 , & 0 \\ - 1 , & 7 \end{array} \right] = 8$\begin{bmatrix} 1, & 0 \

  • 1, & 7 \end{bmatrix}+k + k\begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$

or $\begin{bmatrix} 1 + 0 & 0 + 0 \

  • 1 - 7 & 0 + 49 \end{bmatrix}=z = z\begin{bmatrix} 8 & 0 \
  • 8 & 56 \end{bmatrix}+ +\begin{bmatrix} k & 0 \ 0 & k \end{bmatrix}$

or $\begin{bmatrix} 1 & 0 \

  • 8 & 49 \end{bmatrix}==\begin{bmatrix} k + 8 & 0 \
  • 8 & k + 56 \end{bmatrix}$

̃1 = k + 8

49 = k + 56

̃k = – 7