Question
Question: If A<sup>2</sup> = 8A + kI where A = \(\begin{bmatrix} 1 & 0 \\ - 1 & 7 \end{bmatrix}\) then k is :...
If A2 = 8A + kI where A = $\begin{bmatrix} 1 & 0 \
- 1 & 7 \end{bmatrix}$ then k is :
A
7
B
–7
C
1
D
–1
Answer
–7
Explanation
Solution
[1,−1,07] [1,−1,07] = 8$\begin{bmatrix} 1, & 0 \
- 1, & 7 \end{bmatrix}+k\begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$
or $\begin{bmatrix} 1 + 0 & 0 + 0 \
- 1 - 7 & 0 + 49 \end{bmatrix}=z\begin{bmatrix} 8 & 0 \
- 8 & 56 \end{bmatrix}+\begin{bmatrix} k & 0 \ 0 & k \end{bmatrix}$
or $\begin{bmatrix} 1 & 0 \
- 8 & 49 \end{bmatrix}=\begin{bmatrix} k + 8 & 0 \
- 8 & k + 56 \end{bmatrix}$
̃1 = k + 8
49 = k + 56
̃k = – 7