Solveeit Logo

Question

Question: If a<sub>n</sub> =\(\int_{0}^{\pi/2}{\frac{1 - \cos 2nx}{1 - \cos 2x}dx}\) then the value of determi...

If an =0π/21cos2nx1cos2xdx\int_{0}^{\pi/2}{\frac{1 - \cos 2nx}{1 - \cos 2x}dx} then the value of determinant

a1a2a3a4a5a6a7a8a9\left| \begin{matrix} a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9} \end{matrix} \right|is –

A

1

B

–1

C

2

D

None of these

Answer

None of these

Explanation

Solution

Here an + an+2

= 0π/21cos2nx1cos2xdx\int _ { 0 } ^ { \pi / 2 } \frac { 1 - \cos 2 n x } { 1 - \cos 2 x } d x +

0π/21cos2(n+2)x1cos2xdx\int _ { 0 } ^ { \pi / 2 } \frac { 1 - \cos 2 ( \mathrm { n } + 2 ) \mathrm { x } } { 1 - \cos 2 \mathrm { x } } \mathrm { dx }

=

= 0π/222cos2(n+1)x.cos2x1cos2xdx\int_{0}^{\pi/2}{\frac{2 - 2\cos 2(n + 1)x.\cos 2x}{1 - \cos 2x}dx}

Also 2.an+1 = 20π/21cos2(n+1)x1cos2xdx\int_{0}^{\pi/2}{\frac{1 - \cos 2(n + 1)x}{1 - \cos 2x}dx}

\ an + an+2 – 2an+1 =

20π/2{1cos2(n+1)x.cos2x1+cos2(n+1)x}1cos2xdx2\int_{0}^{\pi/2}{\frac{\left\{ 1 - \cos 2(n + 1)x.\cos 2x - 1 + \cos 2(n + 1)x \right\}}{1 - \cos 2x}dx}=20π/2cos2(n+1)x.{1cos2x}1cos2xdx2\int_{0}^{\pi/2}{\frac{\cos 2(n + 1)x.\{ 1 - \cos 2x\}}{1 - \cos 2x}dx}=20π/2cos2(n+1)xdx2\int_{0}^{\pi/2}{\cos 2(n + 1)xdx}

\ an + an+2 – 2an+1 = 2 [sin2(n+1)x2(n+1)]0π/2\left\lbrack \frac{\sin 2(n + 1)x}{2(n + 1)} \right\rbrack_{0}^{\pi/2}

= 1n+1\frac{1}{n + 1} [0 – 0] = 0, …(1)

for all n.

\ an+1 = an+an+22\frac{a_{n} + a_{n + 2}}{2}

\ an + 1 is the AM between an, an+2.

Now, D = a1a2a3a4a5a6a7a8a9\left| \begin{matrix} a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9} \end{matrix} \right| = 12\frac { 1 } { 2 } a12a2a3a42a5a6a72a8a9\left| \begin{matrix} a_{1} & 2a_{2} & a_{3} \\ a_{4} & 2a_{5} & a_{6} \\ a_{7} & 2a_{8} & a_{9} \end{matrix} \right|

= 12\frac { 1 } { 2 } a12a2(a1+a3)a3a42a5(a4+a6)a6a72a8(a7+a9)a9\left| \begin{matrix} a_{1} & 2a_{2} - (a_{1} + a_{3}) & a_{3} \\ a_{4} & 2a_{5} - (a_{4} + a_{6}) & a_{6} \\ a_{7} & 2a_{8} - (a_{7} + a_{9}) & a_{9} \end{matrix} \right|, C2 ® C2, – C1 – C3

= 12\frac { 1 } { 2 } a10a3a40a6a70a9\left| \begin{matrix} a_{1} & 0 & a_{3} \\ a_{4} & 0 & a_{6} \\ a_{7} & 0 & a_{9} \end{matrix} \right|, using (1)

\ D = 0.