Question
Question: If a<sub>i</sub><sup>2</sup> + b<sub>i</sub><sup>2</sup> + c<sub>i</sub><sup>2</sup> = 1(i = 1,2,3) ...
If ai2 + bi2 + ci2 = 1(i = 1,2,3) and ai aj + bi bj + ci cj = 0(i ¹ j, i, j = 1,2,3) , then value of a1b1c1a2b2c2a3b3c32 is
A
0
B
½
C
1
D
2
Answer
1
Explanation
Solution
a1b1c1a2b2c2a3b3c32= a1a2a3b1b2b3c1c2c3 a1a2a3b1b2b3c1c2c3
=a12+b12+c12a2a1+b2b1+c2c1a3a1+b3b1+c3c1a1a2+b1b2+c1c2a22+b22+c22a3a2+b3b2+c3c2a1a3+b1b3+c1c3a2a3+b2b3+c2c3a32+b32+c32
= 100010001 = 1