Solveeit Logo

Question

Question: If A<sub>1</sub> is the area of the parabola y<sup>2</sup> = 4ax lying between vertex and the latus ...

If A1 is the area of the parabola y2 = 4ax lying between vertex and the latus rectum and A2 is the area between the latus rectum and the double ordinate x = 2a, then A1 A2\frac { \mathrm { A } _ { 1 } } { \mathrm {~A} _ { 2 } } =

A

222 \sqrt { 2 } – 1

B

17(22+1)\frac { 1 } { 7 } ( 2 \sqrt { 2 } + 1 )

C

17(221)\frac { 1 } { 7 } ( 2 \sqrt { 2 } - 1 )

D

None

Answer

17(22+1)\frac { 1 } { 7 } ( 2 \sqrt { 2 } + 1 )

Explanation

Solution

A1 = 2

A2 =

̃ A1 A2=1221=22+17\frac { \mathrm { A } _ { 1 } } { \mathrm {~A} _ { 2 } } = \frac { 1 } { 2 \sqrt { 2 } - 1 } = \frac { 2 \sqrt { 2 } + 1 } { 7 }