Solveeit Logo

Question

Question: If a<sub>1</sub>, a<sub>2</sub> …….. a<sub>n</sub> are positive real numbers whose product is a fixe...

If a1, a2 …….. an are positive real numbers whose product is a fixed number c, then the minimum value of a1 + a2 + … an – 1 + 2 an is –

A

n(2c)1/n

B

(n + 1) c1/n

C

2 nc1/n

D

(n + 1) (2c)1/n

Answer

n(2c)1/n

Explanation

Solution

a1, a2, a3 …… an = c ̃ a1 a2 a3 … an – 1 (2an) = 2c

Q AM ³ GM

a1+a2+a3+an1+2ann\frac { \mathrm { a } _ { 1 } + \mathrm { a } _ { 2 } + \mathrm { a } _ { 3 } + \ldots \mathrm { a } _ { \mathrm { n } - 1 } + 2 \mathrm { a } _ { \mathrm { n } } } { \mathrm { n } } ³ (a1 a2 a3 … 2an)1/n

a1 + a2 + a3 + … an – 1 + 2an ³ n(2c)1/n