Question
Question: If a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>….a<sub>2n + 1</sub> are in A.P. then \(\frac{a_{2n + ...
If a1, a2, a3….a2n + 1 are in A.P. then a2n+1+a1a2n+1−a1 + a2n+a2a2n−a2+.....an+2+anan+2−an
A
2n(n+1).an+1a2−a1
B
2n(n+1)
C
(n + 1) (a2 – a1)
D
None of these
Answer
2n(n+1).an+1a2−a1
Explanation
Solution
The general term can be given by
tr + 1 = a2n+1−r+ar+1a2n+1−r−ar+1, r = 0, 1, 2, ……, n – 1
= a1+(2n−r)d+{a1+rd}a1+(2n−r)d−{a1+rd} = a1+nd(n−r)d
\ The required sum
dn = ∑r=0n−1tr+1 = ∑r=0n−1a1+nd(n−r)d= [a1+ndn+(n−1)+(n−2)+....+1]d= 2an+1n(n+1)d = 2n(n+1).an+1a2−a1. [Q d = a2 – a1]