Solveeit Logo

Question

Question: If a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>, a<sub>4</sub>, a<sub>5</sub> are roots of the equati...

If a1, a2, a3, a4, a5 are roots of the equation

z^{5}\overset{̶}{+}z^{4} + z^{3} + z^{2} + z + 1= 0 then i=15(2αi)\prod_{i = 1}^{5}{(2–\alpha_{i})}is equal to –

A

63

B

31

C

32

D

64

Answer

63

Explanation

Solution

Sol. z5 + z4 + z3 + z2 + z + 1 = 0

(z – a1) (z – a2) (z – a3) (z – a4) (z – a5)

= z5 + z4 + z3 + z2 + z + 1

Putting z = 2

Ž (2– a1) (2– a2) (2– a3) (2– a4) (2– a5)

= 32 + 16 + 8 + 4 + 2 + 1

\ i=15(2αi)\prod_{i = 1}^{5}{(2–\alpha_{i})} = 63