Question
Question: If a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>, a<sub>4</sub>, a<sub>5</sub> are roots of the equati...
If a1, a2, a3, a4, a5 are roots of the equation
z^{5}\overset{̶}{+}z^{4} + z^{3} + z^{2} + z + 1= 0 then ∏i=15(2–αi)is equal to –
A
63
B
31
C
32
D
64
Answer
63
Explanation
Solution
Sol. z5 + z4 + z3 + z2 + z + 1 = 0
(z – a1) (z – a2) (z – a3) (z – a4) (z – a5)
= z5 + z4 + z3 + z2 + z + 1
Putting z = 2
Ž (2– a1) (2– a2) (2– a3) (2– a4) (2– a5)
= 32 + 16 + 8 + 4 + 2 + 1
\ ∏i=15(2–αi) = 63