Solveeit Logo

Question

Question: If a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>,..., a<sub>4001</sub> are terms of an AP such that \(...

If a1, a2, a3,..., a4001 are terms of an AP such that 1a1a2\frac{1}{a_{1}a_{2}}+1a2a3\frac{1}{a_{2}a_{3}}+….+1a4000a4001\frac{1}{a_{4000}a_{4001}}= 10 and a2 + a4000 = 50, then |a1 – a4001| is equal to –

A

20

B

30

C

40

D

None of these

Answer

30

Explanation

Solution

Now, 1a1a2+1a2a3\frac{1}{a_{1}a_{2}} + \frac{1}{a_{2}a_{3}}+….+1a4000a4001\frac{1}{a_{4000}a_{4001}} = 1 d\frac { 1 } { \mathrm {~d} }

(a2a1a1a2+a3a2a2a3+....+a4001a4000a4000a40001)\left( \frac{a_{2} - a_{1}}{a_{1}a_{2}} + \frac{a_{3} - a_{2}}{a_{2}a_{3}} + .... + \frac{a_{4001} - a_{4000}}{a_{4000}a_{40001}} \right)

= (1a11a2+1a21a3+....+1a40001a4001)\left( \frac{1}{a_{1}} - \frac{1}{a_{2}} + \frac{1}{a_{2}} - \frac{1}{a_{3}} + .... + \frac{1}{a_{4000}} - \frac{1}{a_{4001}} \right)

= (1a11a4001)\left( \frac{1}{a_{1}} - \frac{1}{a_{4001}} \right)=4000a1a4001\frac{4000}{a_{1}a_{4001}}= 10 (given)

̃ a1 a4001 = 400 …(i)

a1 + a4001 = a2 + a4000 = 50 …(ii)

\ (a1 – a4001)2 = (a1 + a4001)2 – 4a1a4001

= (50)2 – 1600

̃ |a1 –a4001| = 30.