Solveeit Logo

Question

Question: If a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub> ..........a<sub>12</sub> are in A.P. and D<sub>1</su...

If a1, a2, a3 ..........a12 are in A.P. and

D1= a1a5a1a2a2a6a2a3a3a7a3a4\left| \begin{matrix} a_{1}a_{5} & a_{1} & a_{2} \\ a_{2}a_{6} & a_{2} & a_{3} \\ a_{3}a_{7} & a_{3} & a_{4} \end{matrix} \right|, D2 = a2a10a2a3a3a11a3a4a4a12a4a5\left| \begin{matrix} a_{2}a_{10} & a_{2} & a_{3} \\ a_{3}a_{11} & a_{3} & a_{4} \\ a_{4}a_{12} & a_{4} & a_{5} \end{matrix} \right| Then D1 : D2 =

A

1 : 2

B

1 : 1

C

2 : 1

D

None

Answer

1 : 1

Explanation

Solution

D1 = a1(a1+4d)a1da2(a2+4d)a2da3(a3+4d)a3d\left| \begin{matrix} a_{1}(a_{1} + 4d) & a_{1} & d \\ a_{2}(a_{2} + 4d) & a_{2} & d \\ a_{3}(a_{3} + 4d) & a_{3} & d \end{matrix} \right|

= a12a1da22a2da32a3d\left| \begin{matrix} a_{1}^{2} & a_{1} & d \\ a_{2}^{2} & a_{2} & d \\ a_{3}^{2} & a_{3} & d \end{matrix} \right| + 4d a1a1da2a2da3a3d\left| \begin{matrix} a_{1} & a_{1} & d \\ a_{2} & a_{2} & d \\ a_{3} & a_{3} & d \end{matrix} \right|

= a12a1da22a12a2a10a32a22a3a20\left| \begin{matrix} a_{1}^{2} & a_{1} & d \\ a_{2}^{2}–a_{1}^{2} & a_{2}–a_{1} & 0 \\ a_{3}^{2}–a_{2}^{2} & a_{3}–a_{2} & 0 \end{matrix} \right| + 0 [R2R2R1R3R3R2]\left\lbrack \begin{aligned} & R_{2} \rightarrow R_{2}–R_{1} \\ & R_{3} \rightarrow R_{3}–R_{2} \end{aligned} \right\rbrack

= d2 a12a1da2+a110a3+a210\left| \begin{matrix} a_{1}^{2} & a_{1} & d \\ a_{2} + a_{1} & 1 & 0 \\ a_{3} + a_{2} & 1 & 0 \end{matrix} \right| [Qa2 –a1 = a3 – a2 = d]

= – d3 (a3 – a1) = – 2d4

Similarly D2 = – 2d4 \ D1 : D2 = 1 : 1