Solveeit Logo

Question

Question: If a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub> …. are in G.P. a<sub>1</sub> + a<sub>n</sub> = 66, a<...

If a1, a2, a3 …. are in G.P. a1 + an = 66, a2 an–1 = 128 and , then n will be-

A

5

B

6

C

7

D

None of these

Answer

6

Explanation

Solution

a2an–1 = 128

Since a1, a2, a3,……., an are in G.P.

̃ = = …….anan1\frac { a _ { n } } { a _ { n - 1 } }

\ a2 an–1 = a1an = 128

Also a1 + a2 = 66

\ an – a1 = 6624×128\sqrt { 66 ^ { 2 } - 4 \times 128 }= 62

Solving an = 64, a1 = 2

Also

\ a(1rn)1r\frac { \mathrm { a } \left( 1 - \mathrm { r } ^ { \mathrm { n } } \right) } { 1 - \mathrm { r } }= 126 (an = a1rn–1)

̃ 64 = 2rn–1 \ rn–1 = 32

= 63 ̃ 32r –1 = 63r – 63

̃ 31r = 62 ̃ r = 2

2n–1 = 32 = 25 ̃ n –1 = 5 ̃ n = 6