Question
Question: If a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>,……. are in A.P. and a<sub>i</sub>\> 0 for each i, the...
If a1, a2, a3,……. are in A.P. and ai> 0 for each i, then
∑i=1nai+12/3+ai+11/3ai1/3+ai2/3nis equal to –
A
an2/3+an1/3+a12/3n
B
an2/3+an1/3+a12/3n+1
C
an2/3+an1/3.a11/3+a12/3n−1
D
None of these
Answer
an2/3+an1/3.a11/3+a12/3n−1
Explanation
Solution
Let d be common difference of A.P. ̃ d = ai – ai–1
Now ai+12/3+ai+11/3.ai1/3+ai2/31= ai+1−aiai+11/3−ai1/3= d1 [ai+11/3−ai1/3]
Thus∑i=1nai+12/3+ai+11/3.ai1/3+ai2/3n
= d1 ∑i=1n−1(ai+11/3−ai1/3)
= d1 (an1/3−a11/3) = d1 an2/3+an1/3.a11/3+a12/3(an−a1)
= an2/3+an1/3.a11/3+a12/3(n−1)
\ [C] is correct.