Solveeit Logo

Question

Question: If a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>,……. are in A.P. and a<sub>i</sub>\> 0 for each i, the...

If a1, a2, a3,……. are in A.P. and ai> 0 for each i, then

i=1nnai+12/3+ai+11/3ai1/3+ai2/3\sum_{i = 1}^{n}\frac{n}{a_{i + 1}^{2/3} + a_{i + 1}^{1/3}a_{i}^{1/3} + a_{i}^{2/3}}is equal to –

A

nan2/3+an1/3+a12/3\frac{n}{a_{n}^{2/3} + a_{n}^{1/3} + a_{1}^{2/3}}

B

n+1an2/3+an1/3+a12/3\frac{n + 1}{a_{n}^{2/3} + a_{n}^{1/3} + a_{1}^{2/3}}

C

n1an2/3+an1/3.a11/3+a12/3\frac{n - 1}{a_{n}^{2/3} + a_{n}^{1/3}.a_{1}^{1/3} + a_{1}^{2/3}}

D

None of these

Answer

n1an2/3+an1/3.a11/3+a12/3\frac{n - 1}{a_{n}^{2/3} + a_{n}^{1/3}.a_{1}^{1/3} + a_{1}^{2/3}}

Explanation

Solution

Let d be common difference of A.P. ̃ d = ai – ai–1

Now 1ai+12/3+ai+11/3.ai1/3+ai2/3\frac{1}{a_{i + 1}^{2/3} + a_{i + 1}^{1/3}.a_{i}^{1/3} + a_{i}^{2/3}}= ai+11/3ai1/3ai+1ai\frac{a_{i + 1}^{1/3} - a_{i}^{1/3}}{a_{i + 1} - a_{i}}= 1 d\frac { 1 } { \mathrm {~d} } [ai+11/3ai1/3]\left\lbrack a_{i + 1}^{1/3} - a_{i}^{1/3} \right\rbrack

Thusi=1nnai+12/3+ai+11/3.ai1/3+ai2/3\sum_{i = 1}^{n}\frac{n}{a_{i + 1}^{2/3} + a_{i + 1}^{1/3}.a_{i}^{1/3} + a_{i}^{2/3}}
= 1d\frac{1}{d} i=1n1(ai+11/3ai1/3)\sum_{i = 1}^{n - 1}\left( a_{i + 1}^{1/3} - a_{i}^{1/3} \right)

= 1d\frac{1}{d} (an1/3a11/3)(a_{n}^{1/3} - a_{1}^{1/3}) = 1d\frac{1}{d} (ana1)an2/3+an1/3.a11/3+a12/3\frac{(a_{n} - a_{1})}{a_{n}^{2/3} + a_{n}^{1/3}.a_{1}^{1/3} + a_{1}^{2/3}}

= (n1)an2/3+an1/3.a11/3+a12/3\frac{(n - 1)}{a_{n}^{2/3} + a_{n}^{1/3}.a_{1}^{1/3} + a_{1}^{2/3}}

\ [C] is correct.