Solveeit Logo

Question

Question: If \(a\sin x + b\cos x = c\) is satisfied by A and B then find (a) sin( A + B) (b) tan(A + B)...

If asinx+bcosx=ca\sin x + b\cos x = c is satisfied by A and B then find (a) sin( A + B) (b) tan(A + B)

Answer

(a) sin(A+B)=2aba2+b2\displaystyle \sin(A+B)=\frac{2ab}{a^2+b^2}

(b) tan(A+B)=2aba2b2\displaystyle \tan(A+B)=-\frac{2ab}{a^2-b^2}

Explanation

Solution

We start with the equation

asinx+bcosx=c.a\sin x + b\cos x = c.

A standard technique is to write the left‐side in the form

Rsin(x+δ),R\sin(x+\delta),

where

R=a2+b2,cosδ=aR,sinδ=bR.R=\sqrt{a^2+b^2},\quad \cos\delta=\frac{a}{R},\quad \sin\delta=\frac{b}{R}.

Thus the equation becomes

Rsin(x+δ)=csin(x+δ)=cR.R\sin(x+\delta)=c\quad\Longrightarrow\quad \sin(x+\delta)=\frac{c}{R}.

For the two distinct solutions x=Ax=A and x=Bx=B (choosing the two values provided by the inverse sine function with the appropriate shifts), we can take

{A+δ=sin1(cR),B+δ=πsin1(cR).\begin{cases} A+\delta=\sin^{-1}\left(\frac{c}{R}\right),\\[1mm] B+\delta=\pi-\sin^{-1}\left(\frac{c}{R}\right). \end{cases}

Adding these we have

A+B+2δ=π.A+B+2\delta=\pi.

Thus,

A+B=π2δ.A+B=\pi-2\delta.

Now, we compute part (a):

(a) Find sin(A+B)\sin(A+B):

sin(A+B)=sin(π2δ)=sin2δ.\sin(A+B)=\sin(\pi-2\delta)=\sin 2\delta.

Using the double-angle formula

sin2δ=2sinδcosδ,\sin2\delta=2\sin\delta\cos\delta,

and substituting sinδ=bR\sin\delta=\dfrac{b}{R} and cosδ=aR\cos\delta=\dfrac{a}{R} (with R=a2+b2R=\sqrt{a^2+b^2}), we obtain

sin(A+B)=2(bR)(aR)=2aba2+b2.\sin(A+B)=2\left(\frac{b}{R}\right)\left(\frac{a}{R}\right)=\frac{2ab}{a^2+b^2}.

(b) Find tan(A+B)\tan(A+B):

Since

A+B=π2δ,A+B=\pi-2\delta,

we have

tan(A+B)=tan(π2δ)=tan2δ.\tan(A+B)=\tan(\pi-2\delta)=-\tan2\delta.

Now use the double-angle formula for tangent:

tan2δ=2tanδ1tan2δ.\tan2\delta=\frac{2\tan\delta}{1-\tan^2\delta}.

But tanδ=sinδcosδ=ba\tan\delta=\frac{\sin\delta}{\cos\delta}=\frac{b}{a}; hence

tan2δ=2(b/a)1(b/a)2=2b/aa2b2a2=2aba2b2.\tan2\delta=\frac{2(b/a)}{1-(b/a)^2}=\frac{2b/a}{\frac{a^2-b^2}{a^2}}=\frac{2ab}{a^2-b^2}.

Then

tan(A+B)=tan2δ=2aba2b2.\tan(A+B)=-\tan2\delta=-\frac{2ab}{a^2-b^2}.