Question
Mathematics Question on Trigonometric Equations
If asin−1x−bcos−1x=c , asin−1x+bcos−1x is equal to
A
a+bπab+c(a−b)
B
0
C
a+bπab−c(a−b)
D
2π
Answer
a+bπab+c(a−b)
Explanation
Solution
Given,
asin−1x−bcos−1x=c...(i)
⇒a(2π−cos−1x)−bcos−1x=c
⇒(a+b)cos−1x=2aπ−c
⇒cos−1x=a+baπ/2−c
Again from E (i)
asin−1x−b(2π−sin−1x)=c
⇒(sin−1x)−(a+b)=c+2bπ
⇒sin−1x=a+bc+bπ/2
∴asin−1x+bcos−1x=a+ba(c+bπ/2)
+a+bb(aπ/2−c)
=a+bc(a−b)+abπ