Solveeit Logo

Question

Question: If \[\arg z<0\], then \[\arg \left( -z \right)-\arg z=\] (A) \[\pi \] (B) \[-\pi \] (C) \[\dfr...

If argz<0\arg z<0, then arg(z)argz=\arg \left( -z \right)-\arg z=
(A) π\pi
(B) π-\pi
(C) π2\dfrac{\pi }{2}
(D) π2-\dfrac{\pi }{2}

Explanation

Solution

We are given an expression argz<0\arg z<0 and using this we have to compute the value for arg(z)argz\arg \left( -z \right)-\arg z from the given options. We will first write the let that ‘z’ in the given expression be, z=r(cosθ+isinθ)z=r\left( \cos \theta +i\sin \theta \right). So, we will have arg(z)=θ\arg \left( z \right)=\theta . We will use this form to find the value of arg(z)\arg \left( -z \right). We know that, cos(π+θ)=cosθ\cos \left( \pi +\theta \right)=-\cos \theta and sin(π+θ)=sinθ\sin \left( \pi +\theta \right)=-\sin \theta . Then, we will compute the values in arg(z)argz\arg \left( -z \right)-\arg z and get the required value.

Complete step by step answer:
According to the given question, we are given an expression argz<0\arg z<0 and we are asked to use this expression and find the value of arg(z)argz\arg \left( -z \right)-\arg z.
We have the given expression as
argz<0\arg z<0
Let us assume the variable in the given expression be written in terms of polar coordinate form and we get,
z=r(cosθ+isinθ)z=r\left( \cos \theta +i\sin \theta \right)
And arg(z)=θ<0\arg \left( z \right)=\theta <0
We will now find the value of arg(z)\arg \left( -z \right), and for that we have,
z=r(cosθ+isinθ)-z=-r\left( \cos \theta +i\sin \theta \right)
In the above equation, the negative sign in the RHS has the cosine function and the sine function as negative. But we know that, cos(π+θ)=cosθ\cos \left( \pi +\theta \right)=-\cos \theta and sin(π+θ)=sinθ\sin \left( \pi +\theta \right)=-\sin \theta . So, we can write the expression as,
z=r(cos(π+θ)+isin(π+θ))\Rightarrow -z=r\left( \cos \left( \pi +\theta \right)+i\sin \left( \pi +\theta \right) \right)
So, if we write arg(z)=θ\arg \left( z \right)=\theta for the expression z=r(cosθ+isinθ)z=r\left( \cos \theta +i\sin \theta \right), that is, we write the function in terms of the angle and so for the expression z=r(cos(π+θ)+isin(π+θ))-z=r\left( \cos \left( \pi +\theta \right)+i\sin \left( \pi +\theta \right) \right), we will have the function as,
arg(z)=π+θ\arg \left( -z \right)=\pi +\theta
Now, we will substitute the obtained values in the expression,
arg(z)argz\arg \left( -z \right)-\arg z
We get,
(π+θ)θ\Rightarrow \left( \pi +\theta \right)-\theta
Opening up the brackets, we get the value of the expression as,
π+θθ\Rightarrow \pi +\theta -\theta
π\Rightarrow \pi

So, the correct answer is “Option A”.

Note: The given function arg(z)\arg \left( z \right)is given to have a value less than 0, that is, existence of imaginary terms/ numbers. That is why we introduced the term iota (ii) while defining the value of the variable ‘z’. So, if the value of the function is greater than 0 then we will have real values so the iota (ii) is not required.