Solveeit Logo

Question

Question: If area of the triangle having vertices (a, b), (b, c) and (c, a) is D, then area of the triangle ha...

If area of the triangle having vertices (a, b), (b, c) and (c, a) is D, then area of the triangle having vertices (ac– b2, ab – c2), (ba – c2, bc – a2) and (cb – a2, ca – b2) is-

A

2 abcD

B

D

C

Δa+b+c\frac{\Delta}{a + b + c}

D

(a + b + c)2D

Answer

(a + b + c)2D

Explanation

Solution

We have

D = 12\frac { 1 } { 2 } ab1bc1ca1\left| \begin{matrix} a & b & 1 \\ b & c & 1 \\ c & a & 1 \end{matrix} \right| = 12\frac{1}{2} (a2 + b2 + c2 – ab – bc – ca)

Now, area of other triangle is

D¢ =12\frac { 1 } { 2 } acb2abc21bac2bca21cba2cab21\left| \begin{matrix} ac - b^{2} & ab - c^{2} & 1 \\ ba - c^{2} & bc - a^{2} & 1 \\ cb - a^{2} & ca - b^{2} & 1 \end{matrix} \right|

=12\frac { 1 } { 2 } (cb)(a+b+c)(ac)(a+b+c)0(ac)(a+b+c)(ba)(a+b+c)0bca2acb21[R1R1R2\left| \begin{matrix} (c - b)(a + b + c) & (a - c)(a + b + c) & 0 \\ (a - c)(a + b + c) & (b - a)(a + b + c) & 0 \\ bc - a^{2} & ac - b^{2} & 1 \end{matrix} \right|\lbrack R_{1} \rightarrow R_{1}–R_{2} $$R_{2} \rightarrow R_{2} - R_{3}\rbrack

= 12\frac{1}{2} (a + b + c)2 cbac0acba0bca2acb21\left| \begin{matrix} c - b & a - c & 0 \\ a - c & b - a & 0 \\ bc - a^{2} & ac - b^{2} & 1 \end{matrix} \right|

= 12\frac{1}{2} (a + b + c)2 (a2 + b2 + c2 – ab – bc – ca)

= (a + b + c)2 D.