Solveeit Logo

Question

Question: If area bounded by the curves \(y ^ { 2 } = 4 a x\) and \(y = m x\) is \(\frac { a ^ { 2 } } { 3 }...

If area bounded by the curves y2=4axy ^ { 2 } = 4 a x and y=mxy = m x is a23\frac { a ^ { 2 } } { 3 }, then the value of mm is

A

2

B
C

12\frac { 1 } { 2 }

D

None of these

Answer

2

Explanation

Solution

The two curves y2=4axy ^ { 2 } = 4 a x and y=mxy = m x intersect at (4am2,4am)\left( \frac { 4 a } { m ^ { 2 } } , \frac { 4 a } { m } \right) and the area enclosed by the two curves is given by 04a/m2(4axmx)dx\int _ { 0 } ^ { 4 a / m ^ { 2 } } ( \sqrt { 4 a x } - m x ) d x .

83a2m3=a23m3=8m=2\frac { 8 } { 3 } \frac { a ^ { 2 } } { m ^ { 3 } } = \frac { a ^ { 2 } } { 3 } \Rightarrow m ^ { 3 } = 8 \Rightarrow m = 2.