Question
Question: If α, β, γ, σ are the roots of the equation *x*<sup>4</sup> + 4*x*<sup>3</sup> – 6*x*<sup>2</sup> +...
If α, β, γ, σ are the roots of the equation
x4 + 4x3 – 6x2 + 7x – 9 = 0, then the value of
(1 + α2) (1 + β2) (1 + γ2) (1 + σ2) is –
A
5
B
9
C
11
D
13
Answer
13
Explanation
Solution
Since α, β, γ and σ are the roots of the given equation.
Therefore
x4 + 4x3 – 6x2 + 7x – 9 = (x – α) (x – β) (x – γ) (x – σ)
Putting x = i and then x = –i, we get
1 – 4i + 6 + 7i – 9 = (i – α) (i – β) (i – γ) (i – σ)
and 1 + 4i + 6 – 7i – 9 = (–i – α) (–i – β) (–i – γ) (–i – σ)
Multiplying these two, we get
(–2 + 3i) (–2 – 3i) = (1 + α2) (1 + β2) (1 + γ2) (1 + σ2)
⇒ 13 = (1 + α2) (1 + β2) (1 + γ2) (1 + σ2).