Solveeit Logo

Question

Question: If α,β are the roots of the equation 4x<sup>2</sup> + 3x + 7 = 0, then the value of \(\frac{1}{\alph...

If α,β are the roots of the equation 4x2 + 3x + 7 = 0, then the value of 1α3+1β3\frac{1}{\alpha^{3}} + \frac{1}{\beta^{3}}is equal to –

A

2764\frac{27}{64}

B

6316\frac{63}{16}

C

225343\frac{225}{343}

D

None of these

Answer

225343\frac{225}{343}

Explanation

Solution

α + β = – 3/4, αβ = 7/4

1α3+1β3\frac{1}{\alpha^{3}} + \frac{1}{\beta^{3}}= (α+β)33αβ(α+β)α3β3\frac{(\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta)}{\alpha^{3}\beta^{3}}

= (3/4)33.(7/4.)(3/4)(7/4)3\frac{( - 3/4)^{3} - 3.(7/4.)( - 3/4)}{(7/4)^{3}}= 225343\frac{225}{343}