Solveeit Logo

Question

Question: If α, β are the roots of ax<sup>2</sup> – 2bx + c = 0, then α<sup>3</sup>β<sup>3</sup> + α<sup>2</s...

If α, β are the roots of ax2 – 2bx + c = 0, then

α3β3 + α2β3 + α3β2 is –

A

c2(c+2b)a3\frac{c^{2}(c + 2b)}{a^{3}}

B

bc3a3\frac{bc^{3}}{a^{3}}

C

c2a3\frac{c^{2}}{a^{3}}

D

None of thes

Answer

c2(c+2b)a3\frac{c^{2}(c + 2b)}{a^{3}}

Explanation

Solution

α + β = 2ba\frac{2b}{a}, αβ = ca\frac{c}{a}

α3β3 + α2β3 + α3β2 = (c/a)3 + (c/a)2 (2b/a)

= c2a3\frac{c^{2}}{a^{3}} [c + 2b]