Solveeit Logo

Question

Question: If α, β are roots of x<sup>2</sup> – 3x + 1 = 0 then the equation whose roots are \(\frac{1}{\alpha ...

If α, β are roots of x2 – 3x + 1 = 0 then the equation whose roots are 1α2\frac{1}{\alpha –2}, 1β2\frac{1}{\beta –2} is –

A

x2 + x – 1 = 0

B

x2 + x + 1 = 0

C

x2 – x – 1 = 0

D

None of these

Answer

x2 – x – 1 = 0

Explanation

Solution

α, β → x2 – 3x + 1 = 0 ; α/β = x

1α2\frac{1}{\alpha –2}or 1β2\frac{1}{\beta –2}= x ⇒ (α – 2) or (β – 2) = 1x\frac{1}{x}

x = α /β = 1x\frac{1}{x} + 2 ⇒  x →1x\frac{1}{x} + 2

Required quadratic equation

= (1x+2)2\left( \frac{1}{x} + 2 \right)^{2}–3(1x+2)\left( \frac{1}{x} + 2 \right) +1 = 0

⇒ 4x2 + 4x + 1 – 3x – 6x2 + x2 = 0

⇒ x2–x–1 = 0