Solveeit Logo

Question

Question: If α, β are roots of equation a*x*<sup>2</sup> + b*x* + c = 0 then the equation a(*x* – 2)<sup>2</s...

If α, β are roots of equation ax2 + bx + c = 0 then the equation

a(x – 2)2 – b(x – 1) (x – 2) + c(x – 1)2 = 0 has roots-

A

α2α1\frac{\alpha - 2}{\alpha - 1}, β2β1\frac{\beta - 2}{\beta - 1}

B

α+2α+1\frac{\alpha + 2}{\alpha + 1}, β+2β+1\frac{\beta + 2}{\beta + 1}

C

α2α+1\frac{\alpha - 2}{\alpha + 1}, β2β+1\frac{\beta - 2}{\beta + 1}

D

α+2α1\frac{\alpha + 2}{\alpha - 1}, β+2β1\frac{\beta + 2}{\beta - 1}

Answer

α+2α+1\frac{\alpha + 2}{\alpha + 1}, β+2β+1\frac{\beta + 2}{\beta + 1}

Explanation

Solution

a ((x2)(x1))2\left( \frac{- (x - 2)}{(x - 1)} \right)^{2}+ b((x1)(x2))\left( \frac{- (x - 1)}{(x - 2)} \right) + c = 0

Now replace (x2)(x1)\frac{- (x - 2)}{(x - 1)} by α 

Then α = (x2)x1\frac{- (x - 2)}{x - 1}

⇒ αx – α = –x + 2

⇒ x(α + 1) = α + 2

⇒ x = (α+2α+1)\left( \frac{\alpha + 2}{\alpha + 1} \right)

Roots (α+2α+1,β+2β+1)\left( \frac{\alpha + 2}{\alpha + 1},\frac{\beta + 2}{\beta + 1} \right).