Solveeit Logo

Question

Question: If A(q) =\(\begin{bmatrix} 1 & \tan\theta \\ - \tan\theta & 1 \end{bmatrix}\) and AB = I, then (sec...

If A(q) =$\begin{bmatrix} 1 & \tan\theta \

  • \tan\theta & 1 \end{bmatrix}$ and AB = I, then (sec2q) B is equal

to-

A

A(q)

B

A(–q)

C

A(q/2)

D

A(–q/2)

Answer

A(–q)

Explanation

Solution

As AB = I, we get B = A–1

1 & - \tan\theta \\ \tan\theta & 1 \end{bmatrix}$$ ̃ (sec<sup>2</sup>q) B = $\begin{bmatrix} 1 & - \tan\theta \\ \tan\theta & 1 \end{bmatrix} = A( - \theta)$