Question
Question: If A(q) =\(\begin{bmatrix} 1 & \tan\theta \\ - \tan\theta & 1 \end{bmatrix}\) and AB = I, then (sec...
If A(q) =$\begin{bmatrix} 1 & \tan\theta \
- \tan\theta & 1 \end{bmatrix}$ and AB = I, then (sec2q) B is equal
to-
A
A(q)
B
A(–q)
C
A(q/2)
D
A(–q/2)
Answer
A(–q)
Explanation
Solution
As AB = I, we get B = A–1
1 & - \tan\theta \\ \tan\theta & 1 \end{bmatrix}$$ ̃ (sec<sup>2</sup>q) B = $\begin{bmatrix} 1 & - \tan\theta \\ \tan\theta & 1 \end{bmatrix} = A( - \theta)$