Question
Question: If any tangent to the ellipse \(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1\)intercepts equal leng...
If any tangent to the ellipse a2x2+b2y2=1intercepts equal lengths l on the axes, then l=
A
a2+b2
B
a2+b2
C
(a2+b2)2
D
None of these
Answer
a2+b2
Explanation
Solution
The equation of any tangent to the given ellipse is
axcosθ+bysinθ=1
This line meets the coordinate axes at P(cosθa,0)and Q(0,sinθb)
∴cosθa=l=sinθb⇒ cosθ=laand sinθ=lb ⇒
cos2θ+sin2θ=l2a2+l2b2⇒l2=a2+b2⇒l=a2+b2