Question
Question: If any tangent to the ellipse \(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1\) intercepts lengths h...
If any tangent to the ellipse a2x2+b2y2=1 intercepts lengths h and k on the axes, then
A
h2a2−k2b2=1
B
h2a2+k2b2=1
C
k2a2−h2b2=1
D
k2a2+h2b2=1
Answer
h2a2+k2b2=1
Explanation
Solution
Equation of ellipse is a2x2+b2y2=1 .... (1)
a2xx1+b2yy1=1 .... (2)
The tangent at P meets x-axis i.e. y = 0 where
a2xx1=1orx=x1a2
But the intercept on x-axis is given to be h
∴ x1a2=horx1=ha2The tangent at P meets y-axis i.e. x = 0 where b2yy1=1ory1b2.
But the intercept on y-axis is given to be k.
∴ y1b2=kory1=kb2Since P lies on (1),
∴ a2x12+b2y12=1
ora2a4/h2+b2b4/k2=1 [Using (3) and (4)]
or h2a2+k2b2=1.