Solveeit Logo

Question

Question: If any tangent to the ellipse \(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1\) intercepts lengths h...

If any tangent to the ellipse x2a2+y2b2=1\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 intercepts lengths h and k on the axes, then

A

a2h2b2k2=1\frac{a^{2}}{h^{2}} - \frac{b^{2}}{k^{2}} = 1

B

a2h2+b2k2=1\frac{a^{2}}{h^{2}} + \frac{b^{2}}{k^{2}} = 1

C

a2k2b2h2=1\frac{a^{2}}{k^{2}} - \frac{b^{2}}{h^{2}} = 1

D

a2k2+b2h2=1\frac{a^{2}}{k^{2}} + \frac{b^{2}}{h^{2}} = 1

Answer

a2h2+b2k2=1\frac{a^{2}}{h^{2}} + \frac{b^{2}}{k^{2}} = 1

Explanation

Solution

Equation of ellipse is x2a2+y2b2=1\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 .... (1)

xx1a2+yy1b2=1\frac{xx_{1}}{a^{2}} + \frac{yy_{1}}{b^{2}} = 1 .... (2)

The tangent at P meets x-axis i.e. y = 0 where

xx1a2=1orx=a2x1\frac{xx_{1}}{a^{2}} = 1orx = \frac{a^{2}}{x_{1}}

But the intercept on x-axis is given to be h

a2x1=horx1=a2h\frac{a^{2}}{x_{1}} = horx_{1} = \frac{a^{2}}{h}The tangent at P meets y-axis i.e. x = 0 where yy1b2=1orb2y1\frac{yy_{1}}{b^{2}} = 1or\frac{b^{2}}{y_{1}}.

But the intercept on y-axis is given to be k.

b2y1=kory1=b2k\frac{b^{2}}{y_{1}} = kory_{1} = \frac{b^{2}}{k}Since P lies on (1),

x12a2+y12b2=1\frac{x_{1}^{2}}{a^{2}} + \frac{y_{1}^{2}}{b^{2}} = 1

ora4/h2a2+b4/k2b2=1\frac{a^{4}/h^{2}}{a^{2}} + \frac{b^{4}/k^{2}}{b^{2}} = 1 [Using (3) and (4)]

or a2h2+b2k2=1\frac{a^{2}}{h^{2}} + \frac{b^{2}}{k^{2}} = 1.