Question
Question: If α and β are the roots of the quadratic equation ax<sup>2</sup> + bx + c = 0, then \(\lbrack d + a...
If α and β are the roots of the quadratic equation ax2 + bx + c = 0, then [d+a,d+2a][a−d,a+d] =
A
[d+a,a−d]
B
[d−a,d+a]
C
f(x)=log(x+x2+1)
D
None of these
Answer
[d+a,a−d]
Explanation
Solution
ax2 + bx + c = 0 roots α, β
So, cx2 + bx + a = c (x – 1/α) (x – 1/β)
Limx→1/α
Limx→1/α 2α2(x−1/α)22sin22c(x−1/α)(x−1/β)
Limx→1/α
Limx→1/α=2αc(α1−β1)