Solveeit Logo

Question

Question: If α and β are the root of the quadratic equation ax<sup>2</sup> + bx + c = 0, then\(f(x) = x - \lb...

If α and β are the root of the quadratic equation ax2 + bx + c =

0, thenf(x)=x[x],f(x)f(x) = x - \lbrack x\rbrack,f(x) =

A

12\frac{1}{2}

B

f(x)=sin(πxn1)+cos(πxn),f(x) = \sin\left( \frac{\pi x}{n - 1} \right) + \cos\left( \frac{\pi x}{n} \right),

C

nZ,n \in Z,

D

None of these

Answer

12\frac{1}{2}

Explanation

Solution

Q ax2 + bx + c = 0 has roots α and β then

i.e., cx2 + bx + a = 0 has roots 1α\frac { 1 } { \alpha } and 1β\frac { 1 } { \beta }.

⇒ c = c

=limx1α\lim _ { x \rightarrow \frac { 1 } { \alpha } }

=limx1α\lim _ { x \rightarrow \frac { 1 } { \alpha } }

=limx1α\lim _ { x \rightarrow \frac { 1 } { \alpha } } sin(cx2+bx+a2)(1αx)\left| \frac { \sin \left( \frac { c x ^ { 2 } + b x + a } { 2 } \right) } { ( 1 - \alpha x ) } \right|

= limx1α\lim _ { x \rightarrow \frac { 1 } { \alpha } } sin{c2(x1α)(x1β)}α(x1α)\left| \frac { \sin \left\{ \frac { c } { 2 } \left( x - \frac { 1 } { \alpha } \right) \left( x - \frac { 1 } { \beta } \right) \right\} } { - \alpha \left( x - \frac { 1 } { \alpha } \right) } \right|

=

= 1c2(1α1β)α\left. 1 \cdot \frac { \frac { c } { 2 } \left( \frac { 1 } { \alpha } - \frac { 1 } { \beta } \right) } { - \alpha } \right\rvert \, = c2α(1α1β)\left| \frac { \mathrm { c } } { 2 \alpha } \left( \frac { 1 } { \alpha } - \frac { 1 } { \beta } \right) \right| .