Question
Question: If α and β are eccentric angles of the ends of a focal chord of the ellipse \(\frac{x^{2}}{a^{2}} + ...
If α and β are eccentric angles of the ends of a focal chord of the ellipse a2x2+b2y2=1, then tan2α tan 2β is equal to
A
1+e1−e
B
e+1e−1
C
e−1e+1
D
None of these
Answer
e+1e−1
Explanation
Solution
The coordinates of the end points of the focal chord are (a cos α. b sin α) and (a cos β, b sin β). Therefore the equation of focal chord is
axcos(2α+β)=cos(2α−β)This passes through (ae, 0)
∴ αae cos (2α+β)=cos(2α−β)
⇒ cos(2α−β)cos(2α+β)=e1
⇒cos(2α+β)+cos(2α−β)cos(2α+β)−cos(2α−β)=1+e1−e
⇒ −2cos2αcos2β2sin2αsin2β=1+e1−e
⇒ - tan 2αtan2β=1+e1−e ⇒ tan2αtan2β=e+1e−1