Solveeit Logo

Question

Question: If an isosceles triangle of vertical angle \(2\theta \) is inscribed in a circle of radius \(a\). Th...

If an isosceles triangle of vertical angle 2θ2\theta is inscribed in a circle of radius aa. Then, area of the triangle is maximum, when θ\theta is equal to
A. π6\dfrac{\pi }{6}
B. π4\dfrac{\pi }{4}
C. π3\dfrac{\pi }{3}
D. π2\dfrac{\pi }{2}

Explanation

Solution

Hint- We will be using an inscribed angle theorem to evaluate the base and height of the triangle which will help in finding the area of the triangle.

In the figure, ABC\vartriangle {\text{ABC}} is an isosceles triangle with AB=AC{\text{AB}} = {\text{AC}}.
Also it is given that A=BAC=2θ\angle {\text{A}} = \angle {\text{BAC}} = 2\theta (shown in the figure as marked by red arc)
The centre of the circle is O and radius OC=OA=a{\text{OC}} = {\text{OA}} = a
Now, let us draw an angle bisector AD from the vertex A of the isosceles triangle which divides A=BAC=2θ\angle {\text{A}} = \angle {\text{BAC}} = 2\theta into two equal angles i.e., BAD=CAD=2θ2=θ\angle {\text{BAD}} = \angle {\text{CAD}} = \dfrac{{2\theta }}{2} = \theta .
According to the inscribed angle theorem, we can say that COD\angle {\text{COD}} will be twice CAD\angle {\text{CAD}}.
i.e., COD=2(CAD)=2θ\angle {\text{COD}} = 2\left( {\angle {\text{CAD}}} \right) = 2\theta
In right angled triangle ODC,
cos(2θ)=BaseHypotenuse=ODOC=ODaOD=a[cos(2θ)]\cos \left( {2\theta } \right) = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}} = \dfrac{{{\text{OD}}}}{{{\text{OC}}}} = \dfrac{{{\text{OD}}}}{a} \Rightarrow {\text{OD}} = a\left[ {\cos \left( {2\theta } \right)} \right]
Also, sin(2θ)=PerpendicularHypotenuse=DCOC=DCaDC=a[sin(2θ)]\sin \left( {2\theta } \right) = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}} = \dfrac{{{\text{DC}}}}{{{\text{OC}}}} = \dfrac{{{\text{DC}}}}{a} \Rightarrow {\text{DC}} = a\left[ {\sin \left( {2\theta } \right)} \right]
Now, BC=2(DC)=2a[sin(2θ)]{\text{BC}} = 2\left( {{\text{DC}}} \right) = 2a\left[ {\sin \left( {2\theta } \right)} \right] and AD=OD+OA=a[cos(2θ)]+a=a[cos(2θ)+1]{\text{AD}} = {\text{OD}} + {\text{OA}} = a\left[ {\cos \left( {2\theta } \right)} \right] + a = a\left[ {\cos \left( {2\theta } \right) + 1} \right]
As we know that Area of a triangle=12×(Base)×(Height){\text{Area of a triangle}} = \dfrac{1}{2} \times \left( {{\text{Base}}} \right) \times \left( {{\text{Height}}} \right)
Area of ABC{\text{Area of }}\vartriangle {\text{ABC}}, A=12×(BC)×(AD)=12×(2a[sin(2θ)])×(a[cos(2θ)+1])=a2[sin(2θ)cos(2θ)+sin(2θ)]{\text{A}} = \dfrac{1}{2} \times \left( {{\text{BC}}} \right) \times \left( {{\text{AD}}} \right) = \dfrac{1}{2} \times \left( {2a\left[ {\sin \left( {2\theta } \right)} \right]} \right) \times \left( {a\left[ {\cos \left( {2\theta } \right) + 1} \right]} \right) = {a^2}\left[ {\sin \left( {2\theta } \right)\cos \left( {2\theta } \right) + \sin \left( {2\theta } \right)} \right]
Also we know that sin(2α)=2(sinα)(cosα)(sinα)(cosα)=sin(2α)2\sin \left( {2\alpha } \right) = 2\left( {\sin \alpha } \right)\left( {\cos \alpha } \right) \Rightarrow \left( {\sin \alpha } \right)\left( {\cos \alpha } \right) = \dfrac{{\sin \left( {2\alpha } \right)}}{2}
A=a2[sin(2θ)cos(2θ)+sin(2θ)]A=a2[sin(4θ)2+sin(2θ)]\Rightarrow {\text{A}} = {a^2}\left[ {\sin \left( {2\theta } \right)\cos \left( {2\theta } \right) + \sin \left( {2\theta } \right)} \right] \Rightarrow {\text{A}} = {a^2}\left[ {\dfrac{{\sin \left( {4\theta } \right)}}{2} + \sin \left( {2\theta } \right)} \right]
Now differentiating above equation with respect to θ\theta both sides, we get

\dfrac{{d{\text{A}}}}{{d\theta }} = \dfrac{{d\left\\{ {{a^2}\left[ {\dfrac{{\sin \left( {4\theta } \right)}}{2} + \sin \left( {2\theta } \right)} \right]} \right\\}}}{{d\theta }} = {a^2}\dfrac{{d\left[ {\dfrac{{\sin \left( {4\theta } \right)}}{2} + \sin \left( {2\theta } \right)} \right]}}{{d\theta }} = {a^2}\left[ {\dfrac{{4\cos \left( {4\theta } \right)}}{2} + 2\cos \left( {2\theta } \right)} \right] \\\ \Rightarrow \dfrac{{d{\text{A}}}}{{d\theta }} = {a^2}\left[ {2\cos \left( {4\theta } \right) + 2\cos \left( {2\theta } \right)} \right] \Rightarrow \dfrac{{d{\text{A}}}}{{d\theta }} = 2{a^2}\left[ {\cos \left( {4\theta } \right) + \cos \left( {2\theta } \right)} \right]{\text{ }} \to (1{\text{)}} \\\

Now, for area of the triangle to be maximum put dAdθ=0\dfrac{{d{\text{A}}}}{{d\theta }} = 0
0=2a2[cos(4θ)+cos(2θ)]cos(4θ)+cos(2θ)=0θ=π2,π6\Rightarrow 0 = 2{a^2}\left[ {\cos \left( {4\theta } \right) + \cos \left( {2\theta } \right)} \right] \Rightarrow \cos \left( {4\theta } \right) + \cos \left( {2\theta } \right) = 0 \Rightarrow \theta = \dfrac{\pi }{2},\dfrac{\pi }{6}
Now, differentiating equation (1) again with respect to θ\theta , we have

\Rightarrow \dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} = \dfrac{{d\left\\{ {2{a^2}\left[ {\cos \left( {4\theta } \right) + \cos \left( {2\theta } \right)} \right]} \right\\}}}{{d\theta }} = 2{a^2}\dfrac{{d\left[ {\cos \left( {4\theta } \right) + \cos \left( {2\theta } \right)} \right]}}{{d\theta }} = 2{a^2}\left[ { - 4\sin \left( {4\theta } \right) - 2\sin \left( {2\theta } \right)} \right] \\\ \Rightarrow \dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} = - 4{a^2}\left[ {2\sin \left( {4\theta } \right) + \sin \left( {2\theta } \right)} \right] \\\

For θ=π2\theta = \dfrac{\pi }{2}, d2Adθ2=4a2[2sin(4×π2)+sin(2×π2)]=4a2[2sin(2π)+sin(π)]=4a2[2×0+0]=0\dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} = - 4{a^2}\left[ {2\sin \left( {4 \times \dfrac{\pi }{2}} \right) + \sin \left( {2 \times \dfrac{\pi }{2}} \right)} \right] = - 4{a^2}\left[ {2\sin \left( {2\pi } \right) + \sin \left( \pi \right)} \right] = - 4{a^2}\left[ {2 \times 0 + 0} \right] = 0
For θ=π6\theta = \dfrac{\pi }{6}, d2Adθ2=4a2[2sin(4×π6)+sin(2×π6)]=4a2[2sin(2π3)+sin(π3)]=4a2[2×32+32]=63a2\dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} = - 4{a^2}\left[ {2\sin \left( {4 \times \dfrac{\pi }{6}} \right) + \sin \left( {2 \times \dfrac{\pi }{6}} \right)} \right] = - 4{a^2}\left[ {2\sin \left( {\dfrac{{2\pi }}{3}} \right) + \sin \left( {\dfrac{\pi }{3}} \right)} \right] = - 4{a^2}\left[ {2 \times \dfrac{{\sqrt 3 }}{2} + \dfrac{{\sqrt 3 }}{2}} \right] = - 6\sqrt 3 {a^2}
As, we know that area of the triangle will be maximum where d2Adθ2<0\dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} < 0 i.e., will be negative .
So, at θ=π6\theta = \dfrac{\pi }{6}, the area of the given triangle is maximum.
Therefore, option A is correct.

Note- The inscribed angle theorem states that an angle θ\theta inscribed in a circle is half of the central angle 2θ2\theta that subtends the same arc on the circle. Also, here For θ=π2\theta = \dfrac{\pi }{2}, the double derivative of the area of the triangle comes out to be zero which means it is an inflection point.