Solveeit Logo

Question

Question: If an inverse trigonometric function is given by \(y={{\tan }^{-1}}\left( \dfrac{x-\sqrt{x}}{1+{{x}^...

If an inverse trigonometric function is given by y=tan1(xx1+x32)y={{\tan }^{-1}}\left( \dfrac{x-\sqrt{x}}{1+{{x}^{\dfrac{3}{2}}}} \right) , then find out the value of dydxx=1{{\dfrac{dy}{dx}}_{x=1}} .

Explanation

Solution

Hint:We can rearrange and substitute x=tanAx=\tan A and x12=tanB{{x}^{\dfrac{1}{2}}}=\tan B. Then, we can use the chain rule of differentiation for f(g(x))f(g(x)) given by f(g(x))×g(x){{f}^{'}}(g(x))\times {{g}^{'}}(x) and then solve it.

Complete step-by-step solution -

So we have been given that y=tan1(xx1+x32)y={{\tan }^{-1}}\left( \dfrac{x-\sqrt{x}}{1+{{x}^{\dfrac{3}{2}}}} \right).
So we can see that we can make the above equation in simpler form. If we want to differentiate in simpler form we should cancel the tan1{{\tan }^{-1}} . So for removing tan1{{\tan }^{-1}} we have to substitute xx and x12{{x}^{\dfrac{1}{2}}} .
So simplifying it we get
y=tan1(xx121+xx12)y={{\tan }^{-1}}\left( \dfrac{x-{{x}^{\dfrac{1}{2}}}}{1+x{{x}^{\dfrac{1}{2}}}} \right) ………… (1)
So let us consider x=tanAx=\tan A and x12=tanB{{x}^{\dfrac{1}{2}}}=\tan B . Now substituting xx and x12{{x}^{\dfrac{1}{2}}} by tanA\tan A and tanB\tan B we get,
y=tan1(tanAtanB1+tanAtanB)y={{\tan }^{-1}}\left( \dfrac{\tan A-\tan B}{1+\tan A\tan B} \right) ……….. (2)
So we know the identity tan(AB)\tan (A-B) ,
tan(AB)=(tanAtanB1tanAtanB)\tan (A-B)=\left( \dfrac{\tan A-\tan B}{1-\tan A\tan B} \right) …… (3)
Now substituting (3) in (2), we get,
y=tan1(tanAtanB1+tanAtanB) y=tan1(tan(AB)) \begin{aligned} & y={{\tan }^{-1}}\left( \dfrac{\tan A-\tan B}{1+\tan A\tan B} \right) \\\ & y={{\tan }^{-1}}(\tan (A-B)) \\\ \end{aligned}
So here tan1{{\tan }^{-1}} and tan\tan get cancelled, we get y=ABy=A-B. So now resubstituting we get,
y=tan1xtan1(x12)y={{\tan }^{-1}}x-{{\tan }^{-1}}({{x}^{\dfrac{1}{2}}}) …………. (A=tan1xA={{\tan }^{-1}}xandB=tan1(x12)B={{\tan }^{-1}}({{x}^{\dfrac{1}{2}}}))
Now we know if y=tan1xy={{\tan }^{-1}}x, then the differentiation becomes,
dydx=11+x2\dfrac{dy}{dx}=\dfrac{1}{1+{{x}^{2}}}
Now we want to find for y=tan1xtan1(x12)y={{\tan }^{-1}}x-{{\tan }^{-1}}({{x}^{\dfrac{1}{2}}}) . So for differentiating, we have to use chain rule in the tan1(x12){{\tan }^{-1}}\left( {{x}^{\dfrac{1}{2}}} \right) .
So the chain rule tells us how to find the derivative of a composite function. The chain rule states that the derivative of f(g(x))f(g(x)) is f(g(x))×g(x){{f}^{'}}(g(x))\times {{g}^{'}}(x) . In other words, it helps us differentiate composite functions.
So differentiating and applying chain rule for tan1(x12){{\tan }^{-1}}\left( {{x}^{\dfrac{1}{2}}} \right) we get,
dydx=11+x211+(x12)2d(x12)dx dydx=11+x211+(x12)2(12x) \begin{aligned} & \dfrac{dy}{dx}=\dfrac{1}{1+{{x}^{2}}}-\dfrac{1}{1+{{({{x}^{\dfrac{1}{2}}})}^{2}}}\dfrac{d({{x}^{\dfrac{1}{2}}})}{dx} \\\ & \dfrac{dy}{dx}=\dfrac{1}{1+{{x}^{2}}}-\dfrac{1}{1+{{({{x}^{\dfrac{1}{2}}})}^{2}}}\left( \dfrac{1}{2\sqrt{x}} \right) \\\ \end{aligned}
Simplifying we get,
dydx=11+x212(1+x)x\dfrac{dy}{dx}=\dfrac{1}{1+{{x}^{2}}}-\dfrac{1}{2(1+x)\sqrt{x}} ……… (4)
Now we want to differentiate at x=1x=1 , ……………………. (given that differentiate at x=1x=1)
So substituting x=1x=1 in (4), we get,
dydxx=1=11+1212(1+1)1 dydxx=1=11+112(2) dydxx=1=1214 \begin{aligned} & {{\dfrac{dy}{dx}}_{x=1}}=\dfrac{1}{1+{{1}^{2}}}-\dfrac{1}{2(1+1)\sqrt{1}} \\\ & {{\dfrac{dy}{dx}}_{x=1}}=\dfrac{1}{1+1}-\dfrac{1}{2(2)} \\\ & {{\dfrac{dy}{dx}}_{x=1}}=\dfrac{1}{2}-\dfrac{1}{4} \\\ \end{aligned}
So to solve above we must take LCM
dydxx=1=214 dydxx=1=14 \begin{aligned} & {{\dfrac{dy}{dx}}_{x=1}}=\dfrac{2-1}{4} \\\ & {{\dfrac{dy}{dx}}_{x=1}}=\dfrac{1}{4} \\\ \end{aligned}
dydxx=1=14{{\dfrac{dy}{dx}}_{x=1}}=\dfrac{1}{4}
So we get dydxx=1{{\dfrac{dy}{dx}}_{x=1}} as 14\dfrac{1}{4} .

Note: You should be familiar with the properties or identity such as tan(AB)=(tanAtanB1tanAtanB)\tan (A-B)=\left( \dfrac{\tan A-\tan B}{1-\tan A\tan B} \right) . While differentiating dydx\dfrac{dy}{dx} be careful that you do not miss any of the value for differentiating. Take utmost care for differentiating tan1{{\tan }^{-1}} since it is complicated. While substituting x=1x=1 be careful that you do not miss it anywhere.