Solveeit Logo

Question

Question: If an inverse trigonometric equation is given as \({{\cos }^{-1}}x-{{\sin }^{-1}}x=0\) , then \(x\) ...

If an inverse trigonometric equation is given as cos1xsin1x=0{{\cos }^{-1}}x-{{\sin }^{-1}}x=0 , then xx is equal to.
(a) ±12\pm \dfrac{1}{\sqrt{2}}
(b) 11
(c) ±13\pm \dfrac{1}{\sqrt{3}}
(d) 12\dfrac{1}{\sqrt{2}}

Explanation

Solution

Hint: For solving this question first we will prove an important formula of inverse trigonometric functions i.e., sin1x+cos1x=π2{{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}. After that, we will find the angle sin1x{{\sin }^{-1}}x and then solve further to find the exact value of xx.

Complete step-by-step solution -
Given:
It is given that, cos1xsin1x=0{{\cos }^{-1}}x-{{\sin }^{-1}}x=0 and we have to find the value of xx.
Now, let sinθ=x\sin \theta =x. Then,
sinθ=x θ=sin1x..................(1) \begin{aligned} & \sin \theta =x \\\ & \Rightarrow \theta ={{\sin }^{-1}}x..................\left( 1 \right) \\\ \end{aligned}
Now, as we know that range of function θ=sin1x\theta ={{\sin }^{-1}}x will be from [π2,π2]\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right] . Then,
π2θπ2...................(2)-\dfrac{\pi }{2}\le \theta \le \dfrac{\pi }{2}...................\left( 2 \right)
Now, we know that sinθ=cos(π2θ)\sin \theta =\cos \left( \dfrac{\pi }{2}-\theta \right) always. Then,
sinθ=x cos(π2θ)=x \begin{aligned} & \sin \theta =x \\\ & \Rightarrow \cos \left( \dfrac{\pi }{2}-\theta \right)=x \\\ \end{aligned}
Now, let π2θ=α\dfrac{\pi }{2}-\theta =\alpha so, we can write cos(π2θ)=cosα\cos \left( \dfrac{\pi }{2}-\theta \right)=\cos \alpha in the above equation. Then,
cos(π2θ)=x cosα=x α=cos1x.................(3) \begin{aligned} & \cos \left( \dfrac{\pi }{2}-\theta \right)=x \\\ & \Rightarrow \cos \alpha =x \\\ & \Rightarrow \alpha ={{\cos }^{-1}}x.................\left( 3 \right) \\\ \end{aligned}
Now, as we know that range of function α=cos1x\alpha ={{\cos }^{-1}}x will be from [0,π]\left[ 0,\pi \right] . Then,
0απ0\le \alpha \le \pi
Now, as per our assumption π2θ=α\dfrac{\pi }{2}-\theta =\alpha so, we can write α=π2θ\alpha =\dfrac{\pi }{2}-\theta in the above inequality. Then,
0απ 0π2θπ \begin{aligned} & 0\le \alpha \le \pi \\\ & \Rightarrow 0\le \dfrac{\pi }{2}-\theta \le \pi \\\ \end{aligned}
Now, subtract π2\dfrac{\pi }{2} in the above inequality. Then,
0π2θπ π2π2θπ2ππ2 π2θπ2 \begin{aligned} & 0\le \dfrac{\pi }{2}-\theta \le \pi \\\ & \Rightarrow -\dfrac{\pi }{2}\le \dfrac{\pi }{2}-\theta -\dfrac{\pi }{2}\le \pi -\dfrac{\pi }{2} \\\ & \Rightarrow -\dfrac{\pi }{2}\le -\theta \le \dfrac{\pi }{2} \\\ \end{aligned}
Now, multiply by -1 in the above inequality. Then,
π2θπ2 π2θπ2 \begin{aligned} & -\dfrac{\pi }{2}\le -\theta \le \dfrac{\pi }{2} \\\ & \Rightarrow \dfrac{\pi }{2}\ge \theta \ge -\dfrac{\pi }{2} \\\ \end{aligned}
Now, we can write the above inequality as π2θπ2-\dfrac{\pi }{2}\le -\theta \le \dfrac{\pi }{2} and as this result matches with the equation (2) so, we conclude that we can write α=cos1x\alpha ={{\cos }^{-1}}x for π2θ=α\dfrac{\pi }{2}-\theta =\alpha always. Then,
α=cos1x π2θ=cos1x \begin{aligned} & \alpha ={{\cos }^{-1}}x \\\ & \Rightarrow \dfrac{\pi }{2}-\theta ={{\cos }^{-1}}x \\\ \end{aligned}
Now, put the value of θ=sin1x\theta ={{\sin }^{-1}}x from equation (1) in the above equation. Then,
π2θ=cos1x π2sin1x=cos1x sin1x+cos1x=π2 \begin{aligned} & \dfrac{\pi }{2}-\theta ={{\cos }^{-1}}x \\\ & \Rightarrow \dfrac{\pi }{2}-{{\sin }^{-1}}x={{\cos }^{-1}}x \\\ & \Rightarrow {{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2} \\\ \end{aligned}
Now, from the above result, we conclude that sin1x+cos1x=π2{{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2} is always true. Then,
sin1x+cos1x=π2 cos1x=π2sin1x \begin{aligned} & {{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2} \\\ & \Rightarrow {{\cos }^{-1}}x=\dfrac{\pi }{2}-{{\sin }^{-1}}x \\\ \end{aligned}
Now, subtract sin1x{{\sin }^{-1}}x from the above equation. Then,
cos1x=π2sin1x cos1xsin1x=π2sin1xsin1x cos1xsin1x=π22sin1x \begin{aligned} & {{\cos }^{-1}}x=\dfrac{\pi }{2}-{{\sin }^{-1}}x \\\ & \Rightarrow {{\cos }^{-1}}x-{{\sin }^{-1}}x=\dfrac{\pi }{2}-{{\sin }^{-1}}x-{{\sin }^{-1}}x \\\ & \Rightarrow {{\cos }^{-1}}x-{{\sin }^{-1}}x=\dfrac{\pi }{2}-2{{\sin }^{-1}}x \\\ \end{aligned}
Now, it is given that cos1xsin1x=0{{\cos }^{-1}}x-{{\sin }^{-1}}x=0 . Then,
cos1xsin1x=π22sin1x 0=π22sin1x 2sin1x=π2 sin1x=π4 \begin{aligned} & {{\cos }^{-1}}x-{{\sin }^{-1}}x=\dfrac{\pi }{2}-2{{\sin }^{-1}}x \\\ & \Rightarrow 0=\dfrac{\pi }{2}-2{{\sin }^{-1}}x \\\ & \Rightarrow 2{{\sin }^{-1}}x=\dfrac{\pi }{2} \\\ & \Rightarrow {{\sin }^{-1}}x=\dfrac{\pi }{4} \\\ \end{aligned}
Now, apply sine operator in the above equation and then, write sin(sin1x)=x\sin \left( {{\sin }^{-1}}x \right)=x and sinπ4=12\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}} . Then,
sin1x=π4 sin(sin1x)=sinπ4 x=12 \begin{aligned} & {{\sin }^{-1}}x=\dfrac{\pi }{4} \\\ & \Rightarrow \sin \left( {{\sin }^{-1}}x \right)=\sin \dfrac{\pi }{4} \\\ & \Rightarrow x=\dfrac{1}{\sqrt{2}} \\\ \end{aligned}
Now, from the above result, we conclude that if cos1xsin1x=0{{\cos }^{-1}}x-{{\sin }^{-1}}x=0 , then the value of x=12x=\dfrac{1}{\sqrt{2}} .
Hence, option (d) will be the correct option.

Note: Here, the student should first understand and then proceed in the right direction to get the correct answer quickly. Moreover, for objective problems, we should remember the result sin1x+cos1x=π2{{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2} and apply it directly without any mistake to get the correct answer quickly without doing lengthy calculations.