Solveeit Logo

Question

Question: If an integral is as follows \( I=\int{\left( 1+\cot \left( x-\alpha \right)\cot \left( x+\alpha \ri...

If an integral is as follows I=(1+cot(xα)cot(x+α))I=\int{\left( 1+\cot \left( x-\alpha \right)\cot \left( x+\alpha \right) \right)} , then I is equal to
[a] logcotxcotαcotx+cotα [b] cot2αlog1cotxtanα1+cotxtanα+C [c] csc2αlogtanxcotαtanx+cotα+C [d] logtanxxlogtanα+C \begin{aligned} & [a]\ \log \left| \dfrac{\cot x-\cot \alpha }{\cot x+\cot \alpha } \right| \\\ & [b]\ \cot 2\alpha \log \left| \dfrac{1-\cot x\tan \alpha }{1+\cot x\tan \alpha } \right|+C \\\ & [c]\ \csc 2\alpha \log \left| \dfrac{\tan x-\cot \alpha }{\tan x+\cot \alpha } \right|+C \\\ & [d]\ \log \left| \tan x \right|-x\log \left| \tan \alpha \right|+C \\\ \end{aligned}

Explanation

Solution

Hint:Use the fact that cotA=cosAsinA\cot A=\dfrac{\cos A}{\sin A} . Hence prove that the integrand is equal to sin(xα)sin(x+α)+cos(xα)cos(x+α)sin(xα)sin(x+α)\dfrac{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)+\cos \left( x-\alpha \right)\cos \left( x+\alpha \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)} . Use the fact that cosAcosB+sinAsinB=cos(AB)\cos A\cos B+\sin A\sin B=\cos \left( A-B \right)
Hence prove that the given integral is equal to cos2αsin(xα)sin(x+α)\dfrac{\cos 2\alpha }{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}
Multiply and divide by sin2α\sin 2\alpha and in the numerator, write sin(2α)\sin \left( 2\alpha \right) as sin(x+α(xα))\sin \left( x+\alpha -\left( x-\alpha \right) \right) and use the identity sin(AB)=sinAcosBcosAsinB\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B and hence prove the integrand is equal to cot2α(cot(xα)cot(x+α))\cot 2\alpha \left( \cot \left( x-\alpha \right)-\cot \left( x+\alpha \right) \right) . Hence find the integral of the integrand.

Complete step-by-step answer:
We have
I=(1+cot(x+α)cot(xα))dxI=\int{\left( 1+\cot \left( x+\alpha \right)\cot \left( x-\alpha \right) \right)dx}
We know that cotA=cosAsinA\cot A=\dfrac{\cos A}{\sin A} . Hence, we have
I=(1+cos(xα)cos(x+α)sin(xα)sin(x+α))dxI=\int{\left( 1+\dfrac{\cos \left( x-\alpha \right)\cos \left( x+\alpha \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)} \right)dx}
Taking sin(xα)sin(x+α)\sin \left( x-\alpha \right)\sin \left( x+\alpha \right) as LCM, we get
I=sin(xα)sin(x+α)+cos(xα)cos(x+α)sin(xα)sin(x+α)dxI=\int{\dfrac{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)+\cos \left( x-\alpha \right)\cos \left( x+\alpha \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}}dx
We know that cos(AB)=cosAcosBsinAsinB\cos \left( A-B \right)=\cos A\cos B-\sin A\sin B
Hence, we have
I=cos(x+α(xα))sin(xα)sin(x+α)dx=cos2αsin(xα)sin(x+α)dxI=\int{\dfrac{\cos \left( x+\alpha -\left( x-\alpha \right) \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}dx}=\int{\dfrac{\cos 2\alpha }{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}dx}
Multiplying the numerator and denominator by sin2α\sin 2\alpha , we get
I=cos2αsin2αsin2αdxsin(xα)sin(x+α)I=\dfrac{\cos 2\alpha }{\sin 2\alpha }\int{\dfrac{\sin 2\alpha dx}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}}
In the numerator, writing 2α2\alpha as x+α(xα)x+\alpha -\left( x-\alpha \right) , we get
I=cot2αsin(x+α(xα))dxsin(xα)sin(x+α)I=\cot 2\alpha \int{\dfrac{\sin \left( x+\alpha -\left( x-\alpha \right) \right)dx}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}}
We know that sin(AB)=sinAcosBcosAsinB\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B
Hence, we have
I=cot2αsin(x+α)cos(xα)cos(x+α)sin(xα)sin(xα)sin(x+α)dxI=\cot 2\alpha \int{\dfrac{\sin \left( x+\alpha \right)\cos \left( x-\alpha \right)-\cos \left( x+\alpha \right)\sin \left( x-\alpha \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}dx}
We know that a+bc=ac+bc\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c}
Hence, we have
I=cot2α(sin(x+α)cos(xα)sin(xα)sin(x+α)cos(x+α)sin(xα)sin(xα)sin(x+α))dx =cot2α(cot(xα)cot(x+α))dx \begin{aligned} & I=\cot 2\alpha \int{\left( \dfrac{\sin \left( x+\alpha \right)\cos \left( x-\alpha \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}-\dfrac{\cos \left( x+\alpha \right)\sin \left( x-\alpha \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)} \right)dx} \\\ & =\cot 2\alpha \int{\left( \cot \left( x-\alpha \right)-\cot \left( x+\alpha \right) \right)dx} \\\ \end{aligned}
Using linearity of integration, we get
I=cot2α[cot(xα)dx+cot(x+α)dx]I=\cot 2\alpha \left[ \int{\cot \left( x-\alpha \right)dx}+\int{\cot \left( x+\alpha \right)dx} \right]
We know that cot(ax+b)dx=1alnsin(ax+b)\int{\cot \left( ax+b \right)dx}=\dfrac{1}{a}\ln \left| \sin \left( ax+b \right) \right|
Hence, we have
I=cot2α[lnsin(xα)lnsin(x+α)]=cot2αlnsin(xα)sin(x+α)+CI=\cot 2\alpha \left[ \ln \left| \sin \left( x-\alpha \right) \right|-\ln \left| \sin \left( x+\alpha \right) \right| \right]=\cot 2\alpha \ln \left| \dfrac{\sin \left( x-\alpha \right)}{\sin \left( x+\alpha \right)} \right|+C , where C is an arbitrary constant.
Using sin(AB)=sinAcosBcosAsinB\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B and sin(A+B)=sinAcosB+cosAsinB\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B
I=cot2αlnsinxcosαcosxsinαsinxcosα+cosxsinα+CI=\cot 2\alpha \ln \left| \dfrac{\sin x\cos \alpha -\cos x\sin \alpha }{\sin x\cos \alpha +\cos x\sin \alpha } \right|+C
Dividing numerator and denominator by sinxcosα\sin x\cos \alpha , we get
I=cot2αln1cotxtanα1+cotxtanα+CI=\cot 2\alpha \ln \left| \dfrac{1-\cot x\tan \alpha }{1+\cot x\tan \alpha } \right|+C
Hence option [b] is correct.

Note: It is a general idea that if the denominator is sin(x-a)sin(x-b) or cos(x-a)cos(x-b), then multiply numerator and denominator by sin(a-b) and in the numerator write a-b as (x-b)-(x-a) and if the denominator is sin(x-a)cos(x-b), then multiply numerator and denominator by cos(a-b) and in the numerator write a-b as (x-b)-(x-a). In the question too, we have followed this procedure. Students usually get stuck in these type of questions because they don’t remember the above idea.