Solveeit Logo

Question

Question: If an= \[\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{1 - \cos 2nx}}{{1 - \cos 2x}}} dx\],then a1, a2, a...

If an= 0π21cos2nx1cos2xdx\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{1 - \cos 2nx}}{{1 - \cos 2x}}} dx,then a1, a2, a3, …. an are in
1)A.P
2)G.P
3)H.P
4)All of these

Explanation

Solution

Hint : Since the above question cannot be integrated directly by using integration formulas, we need to use trigonometric identities and formulas to simplify the question and bring it in the form where we can integrate easily using integration formulas and properties. Try to solve the integration for values of n starting from 1.

Complete step-by-step answer :
We have to find the value of the given integral an = 0π21cos2nx1cos2xdx\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{1 - \cos 2nx}}{{1 - \cos 2x}}} dx
For a1, a2, a3, …. an
We will start solving the problem by using the trigonometric identity 1cos2x=2sin2x1 - \cos 2x = 2{\sin ^2}x
Hence our given integral will be
an = 0π21cos2nx1cos2xdx\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{1 - \cos 2nx}}{{1 - \cos 2x}}} dx= 0π22sin2nx2sin2xdx=0π2sin2nxsin2xdx\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{2{{\sin }^2}nx}}{{2{{\sin }^2}x}}} dx = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^2}nx}}{{{{\sin }^2}x}}} dx
hence, an=0π2sin2nxsin2xdx{{\text{a}}_n} = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^2}nx}}{{{{\sin }^2}x}}} dx respectively.
Now we will start solving the integral for every value of n
For n=1, we get
a1=0π2sin2xsin2xdx =0π21dx =[x]0π2 =π2   {a_1} = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^2}x}}{{{{\sin }^2}x}}dx} \\\ = \int\limits_0^{\dfrac{\pi }{2}} {1dx} \\\ = \left[ x \right]_0^{\dfrac{\pi }{2}} \\\ = \dfrac{\pi }{2} \;
hence a1=π2{a_1} = \dfrac{\pi }{2}
for n=2 we get
a2=0π2sin22xsin2xdx{a_2} = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^2}2x}}{{{{\sin }^2}x}}dx}
=0π2sin2x.sin2xsin2xdx= \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sin 2x.\sin 2x}}{{{{\sin }^2}x}}dx}
=0π2(2sinxcosx).(2sinxcosx)sin2xdx= \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\left( {2\sin x\cos x} \right).\left( {2\sin x\cos x} \right)}}{{{{\sin }^2}x}}dx} - - - using sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
=0π24sin2x.cos2xsin2x= \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{4{{\sin }^2}x.{{\cos }^2}x}}{{{{\sin }^2}x}}}
Further solving we get
a2=40π2cos2xdx{a_2} = 4\int\limits_0^{\dfrac{\pi }{2}} {{{\cos }^2}xdx}
We know that 2cos2x=cos2x+12{\cos ^2}x = \cos 2x + 1
Hence we get
a2=40π2cos2x+12dx =20π2cos2x+1dx  {a_2} = 4\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\cos 2x + 1}}{2}dx} \\\ = 2\int\limits_0^{\dfrac{\pi }{2}} {\cos 2x + 1dx} \\\
Further integrating we get

a2=2[[sin2x2]0π2+[x]0π2] =sinπ+π =π   {a_2} = 2\left[ {\left[ {\dfrac{{\sin 2x}}{2}} \right]_0^{\dfrac{\pi }{2}} + \left[ x \right]_0^{\dfrac{\pi }{2}}} \right] \\\ = \sin \pi + \pi \\\ = \pi \;

Hence a2=π{a_2} = \pi
Now for n=3
a3=0π2sin23xsin2xdx{a_3} = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^2}3x}}{{{{\sin }^2}x}}dx}
Solving this integral we get
a3=0π2(3sinx4sin3x)2sin2xdx{a_3} = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{{{\left( {3\sin x - 4{{\sin }^3}x} \right)}^2}}}{{{{\sin }^2}x}}dx} since sin3θ=3sinθ4sin3θ\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta
a3=0π2(3sinx4sin3x)2sin2xdx =0π2(3sinx4sin3xsinx)2dx =0π2(34sin2x)2dx   {a_3} = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{{{\left( {3\sin x - 4{{\sin }^3}x} \right)}^2}}}{{{{\sin }^2}x}}dx} \\\ = \int\limits_0^{\dfrac{\pi }{2}} {{{\left( {\dfrac{{3\sin x - 4{{\sin }^3}x}}{{\sin x}}} \right)}^2}dx} \\\ = \int\limits_0^{\dfrac{\pi }{2}} {{{\left( {3 - 4{{\sin }^2}x} \right)}^2}dx} \;
Using 1cos2x=2sin2x1 - \cos 2x = 2{\sin ^2}x we get
a3=0π2(32(1cos2x))2dx =0π2(32+2cos2x)2dx =0π2(1+2cos2x)2dx   {a_3} = \int\limits_0^{\dfrac{\pi }{2}} {{{\left( {3 - 2(1 - \cos 2x)} \right)}^2}dx} \\\ = \int\limits_0^{\dfrac{\pi }{2}} {{{\left( {3 - 2 + 2\cos 2x} \right)}^2}dx} \\\ = \int\limits_0^{\dfrac{\pi }{2}} {{{\left( {1 + 2\cos 2x} \right)}^2}dx} \;
further using solving we get
a3=0π21+4cos22x+4cos2xdx =[x]0π2+40π2cos4x+12+4[sin2x]0π22  {a_3} = \int\limits_0^{\dfrac{\pi }{2}} {1 + 4{{\cos }^2}2x + 4\cos 2xdx} \\\ = \left[ x \right]_0^{\dfrac{\pi }{2}} + 4\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\cos 4x + 1}}{2}} + 4\dfrac{{\left[ {\sin 2x} \right]_0^{\dfrac{\pi }{2}}}}{2} \\\ since 2cos2x=cos2x+12{\cos ^2}x = \cos 2x + 1
=π2+2[sin4x4]0π2+2[x]0π2+2sin2π =π2+12sin2π+π+0 =π2+π =3π2   = \dfrac{\pi }{2} + 2\left[ {\dfrac{{\sin 4x}}{4}} \right]_0^{\dfrac{\pi }{2}} + 2\left[ x \right]_0^{\dfrac{\pi }{2}} + 2\sin 2\pi \\\ = \dfrac{\pi }{2} + \dfrac{1}{2}\sin 2\pi + \pi + 0 \\\ = \dfrac{\pi }{2} + \pi \\\ = \dfrac{{3\pi }}{2} \;
Hence a3=3π2{a_3} = \dfrac{{3\pi }}{2}
Therefore , a1=π2,a2=π,a3=3π2{a_1} = \dfrac{\pi }{2},{a_2} = \pi ,{a_3} = \dfrac{{3\pi }}{2}
Since the difference between the consecutive term in the above sequence is constant, hence the given term is in AP
Hence the right option to above question is option (A)

Note : Whenever asked for the sequence to be found in AP, GP, or HP, try to solve the integral for minimum three terms. When given trigonometric forms which cannot be integrated directly, use trigonometric identities which are related and help the problem to get simplified and not vice versa.