Solveeit Logo

Question

Question: If an expression is given as \({{\sin }^{4}}\alpha +4{{\cos }^{4}}\beta +2=4\sqrt{2}\sin \alpha \cos...

If an expression is given as sin4α+4cos4β+2=42sinαcosβ,α,β[0,π]{{\sin }^{4}}\alpha +4{{\cos }^{4}}\beta +2=4\sqrt{2}\sin \alpha \cos \beta ,\alpha ,\beta \in \left[ 0,\pi \right], then cos(α+β)cos(αβ)\cos \left( \alpha +\beta \right)-\cos \left( \alpha -\beta \right) is equal to:
(A)00
(B) 2-\sqrt{2}
(C) 1-1
(D) 2\sqrt{2}

Explanation

Solution

For answering this question we will use the concept that Arithmetic MeanGeometric meanA\text{rithmetic Mean}\ge \text{Geometric mean} and apply it. We will start solving the expression sin4α+4cos4β+2=42sinαcosβ,where α,β[0,π]{{\sin }^{4}}\alpha +4{{\cos }^{4}}\beta +2=4\sqrt{2}\sin \alpha \cos \beta ,\text{where }\alpha ,\beta \in \left[ 0,\pi \right] by assuming sinα=x\sin \alpha =x and cosβ=y\cos \beta =y . Then we will derive the values of α,β\alpha ,\beta and substitute them in cos(α+β)cos(αβ)\cos \left( \alpha +\beta \right)-\cos \left( \alpha -\beta \right).

Complete step by step answer:
Now, considering from the question we have the expression sin4α+4cos4β+2=42sinαcosβ,where α,β[0,π]{{\sin }^{4}}\alpha +4{{\cos }^{4}}\beta +2=4\sqrt{2}\sin \alpha \cos \beta ,\text{where }\alpha ,\beta \in \left[ 0,\pi \right] .
Let us assume sinα=x\sin \alpha =x and cosβ=y\cos \beta =y by substituting these values we will have
x4+4y4+2=42xy{{x}^{4}}+4{{y}^{4}}+2=4\sqrt{2}xy .
Since we know that from the basic concept that the Arithmetic mean  Geometric mean\text{Arithmetic mean }\ge \text{ Geometric mean} .
Here we can simply write the expression as x4+4y4+24=2xy\dfrac{{{x}^{4}}+4{{y}^{4}}+2}{4}=\sqrt{2}xy .
This expression can be further simplified as x4+4y4+1+14=2xy\dfrac{{{x}^{4}}+4{{y}^{4}}+1+1}{4}=\sqrt{2}xy .
Here we can observe that on the Left hand side we have the arithmetic mean of x4,4y4,1,1{{x}^{4}},4{{y}^{4}},1,1.
And this can be further simplified as x4+4y4+1+14=(x4×4y4×1×1)14\dfrac{{{x}^{4}}+4{{y}^{4}}+1+1}{4}={{\left( {{x}^{4}}\times 4{{y}^{4}}\times 1\times 1 \right)}^{\dfrac{1}{4}}} .
And on the right hand side we have the geometric mean of x4,4y4,1,1{{x}^{4}},4{{y}^{4}},1,1 .
Hence we can conclude that the arithmetic and geometric mean of x4,4y4,1,1{{x}^{4}},4{{y}^{4}},1,1 are equal.
So we can say that all the items have equal value, this can be mathematically given as x4=4y4=1{{x}^{4}}=4{{y}^{4}}=1 .
So now we can derive the value of x,yx,y from that. They will be x=1 and y=1414x=1\text{ and }y=\dfrac{1}{{{4}^{\dfrac{1}{4}}}} .
So now we have sinα=1\sin \alpha =1 and cosβ=12\cos \beta =\dfrac{1}{\sqrt{2}} .
So now we know that α,β[0,π]\alpha ,\beta \in \left[ 0,\pi \right] so we can say thatα=π2 and β=π4\alpha =\dfrac{\pi }{2}\text{ and }\beta =\dfrac{\pi }{4} .
By substituting these values in cos(α+β)cos(αβ)\cos \left( \alpha +\beta \right)-\cos \left( \alpha -\beta \right) we will have cos(π2+π4)cos(π2π4)\cos \left( \dfrac{\pi }{2}+\dfrac{\pi }{4} \right)-\cos \left( \dfrac{\pi }{2}-\dfrac{\pi }{4} \right) .
By simplifying this we will have cos(3π4)cos(π4)\cos \left( \dfrac{3\pi }{4} \right)-\cos \left( \dfrac{\pi }{4} \right) .
By substituting cos(3π4)=12\cos \left( \dfrac{3\pi }{4} \right)=-\dfrac{1}{\sqrt{2}} and cos(π4)=12\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}} we will have 1212=22-\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}=-\dfrac{2}{\sqrt{2}} .
Hence by simplifying it we will have 2-\sqrt{2} .
So we can conclude that when sin4α+4cos4β+2=42sinαcosβ,α,β[0,π]{{\sin }^{4}}\alpha +4{{\cos }^{4}}\beta +2=4\sqrt{2}\sin \alpha \cos \beta ,\alpha ,\beta \in \left[ 0,\pi \right], cos(α+β)cos(αβ)\cos \left( \alpha +\beta \right)-\cos \left( \alpha -\beta \right) is equal to2-\sqrt{2} .

So, the correct answer is “Option B”.

Note: While answering this type of questions we should be careful that we should remember that the limit that is α,β[0,π]\alpha ,\beta \in \left[ 0,\pi \right] then we will go wrong and write it as α=(4n+1)π2\alpha =\left( 4n+1 \right)\dfrac{\pi }{2} and this type of values will leave us with a complete mess.