Solveeit Logo

Question

Question: If an expression is given as \({{\left( \sqrt{8}+i \right)}^{50}}={{3}^{49}}\left( a+ib \right),\) t...

If an expression is given as (8+i)50=349(a+ib),{{\left( \sqrt{8}+i \right)}^{50}}={{3}^{49}}\left( a+ib \right), then find the value of a2+b2{{a}^{2}}+{{b}^{2}} .
A. (a2+b2)=9 B. (a2+b2)=27 C. (a2+b2)=3 D. (a2+b2)=1 \begin{aligned} & \text{A}\text{. }\left( {{a}^{2}}+{{b}^{2}} \right)=9 \\\ & \text{B}\text{. }\left( {{a}^{2}}+{{b}^{2}} \right)=27 \\\ & \text{C}\text{. }\left( {{a}^{2}}+{{b}^{2}} \right)=3 \\\ & \text{D}\text{. }\left( {{a}^{2}}+{{b}^{2}} \right)=1 \\\ \end{aligned}

Explanation

Solution

Hint: Here, the question is given in complex numbers which consist of real & imaginary numbers. To find this first we need to take the imaginary number as i=1i=\sqrt{-1} and substitute it in the equation given in the question i.e. (8+i)50=349(a+ib),{{\left( \sqrt{8}+i \right)}^{50}}={{3}^{49}}\left( a+ib \right), and simplify it to get the value of a2+b2{{a}^{2}}+{{b}^{2}}.

Complete step by step solution:
A complex number is a combination of real and imaginary numbers. We know that imaginary number such that i=1i=\sqrt{-1}.
By squaring on both sides, we get –
i2=(1)2{{i}^{2}}={{\left( \sqrt{-1} \right)}^{2}}
i2=1{{i}^{2}}=-1
Modulus value of -1 is 1=+1\left| -1 \right|=+1
i2=1\therefore {{i}^{2}}=1
In this question we are given that (8+i)50=349(a+ib).{{\left( \sqrt{8}+i \right)}^{50}}={{3}^{49}}\left( a+ib \right).
We know that modulus of complex numbers (a+ib)=a2+b2\left( a+ib \right)=\sqrt{{{a}^{2}}+{{b}^{2}}} .
Here, (8+i)\left( \sqrt{8}+i \right)and (a+ib)\left( a+ib \right) are complex numbers.
By taking modulus of complex numbers, we get –
((8)2+(i)2)50=349(a2+b2){{\left( \sqrt{{{\left( \sqrt{8} \right)}^{2}}+{{\left( i \right)}^{2}}} \right)}^{50}}={{3}^{49}}\left( \sqrt{{{a}^{2}}+{{b}^{2}}} \right)
By simplifying the above equations, we get –
(8+i2)50=349(a2+b2){{\left( \sqrt{8+{{i}^{2}}} \right)}^{50}}={{3}^{49}}\left( \sqrt{{{a}^{2}}+{{b}^{2}}} \right)
By squaring on both sides in the above equation, we get –
((8+i2)50)2=(349(a2+b2))2{{\left( {{\left( \sqrt{8+{{i}^{2}}} \right)}^{50}} \right)}^{2}}={{\left( {{3}^{49}}\left( \sqrt{{{a}^{2}}+{{b}^{2}}} \right) \right)}^{2}}
By simplifying the above equation, we get –
((8+i2)2)50=(349)2(a2+b2)2{{\left( {{\left( \sqrt{8+{{i}^{2}}} \right)}^{2}} \right)}^{50}}={{\left( {{3}^{49}} \right)}^{2}}{{\left( \sqrt{{{a}^{2}}+{{b}^{2}}} \right)}^{2}}
By cancelling the roots and squares, we get –
(8+i2)50=(349)2(a2+b2).{{\left( 8+{{i}^{2}} \right)}^{50}}={{\left( {{3}^{49}} \right)}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right).
Here, we will substitute i2=1{{i}^{2}}=1 in the above equation, so we get –
(8+1)50=(349)2(a2+b2){{\left( 8+1 \right)}^{50}}={{\left( {{3}^{49}} \right)}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right)
(9)50=(349)2(a2+b2){{\left( 9 \right)}^{50}}={{\left( {{3}^{49}} \right)}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right)
We know that 32=9{{3}^{2}}=9 .
By taking 32{{3}^{2}} instead of 9 we get –
(32)50=(349)2(a2+b2){{\left( {{3}^{2}} \right)}^{50}}={{\left( {{3}^{49}} \right)}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right)
We know that (am)n=amn{{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}} . So, we get –
3100=398(a2+b2){{3}^{100}}={{3}^{98}}\left( {{a}^{2}}+{{b}^{2}} \right)
By dividing 398{{3}^{98}} on both sides, we get –
3100398=(a2+b2)\dfrac{{{3}^{100}}}{{{3}^{98}}}=\left( {{a}^{2}}+{{b}^{2}} \right)
We know that aman=amn\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}} , so we get –
32=a2+b2{{3}^{2}}={{a}^{2}}+{{b}^{2}}
9=a2+b29={{a}^{2}}+{{b}^{2}}
Therefore, a2+b2=9{{a}^{2}}+{{b}^{2}}=9 .
Hence, option (A) is the correct answer.

Note: Students should be very careful while simplifying the equation. We need a2+b2{{a}^{2}}+{{b}^{2}}to be at one side of the equation to find an answer. Students may also find this question with the help of formula given in De Moivre’s theorem i.e. (cosθ+isinθ)n=(cosnθ+isinnθ){{\left( \cos \theta +i\sin \theta \right)}^{n}}=\left( \cos n\theta +i\sin n\theta \right) but this will be the lengthy procedure to find the solution. So, we will ignore it.