Solveeit Logo

Question

Question: If an equation is given by \[i{{z}^{4}}+1=0\], then z can take the value (a) \[\dfrac{1+i}{\sqrt{...

If an equation is given by iz4+1=0i{{z}^{4}}+1=0, then z can take the value
(a) 1+i2\dfrac{1+i}{\sqrt{2}}
(b) cosπ8+isinπ8\cos \dfrac{\pi }{8}+i\sin \dfrac{\pi }{8}
(c) 14i\dfrac{1}{4i}
(d) i

Explanation

Solution

Hint: Find the value of z4{{z}^{4}} from the given expression as i by using i2=1{{i}^{2}}=-1. Now, write i in terms of sinθ and cosθ as cosπ2+isinπ2\sin \theta \text{ and }\cos \theta \text{ as }\cos \dfrac{\pi }{2}+i\sin \dfrac{\pi }{2}. Now, use the Demoivre’s theorem which says that (cosθ+isinθ)n=cosnθ+isinnθ{{\left( \cos \theta +i\sin \theta \right)}^{n}}=\cos n\theta +i\sin n\theta to find the value of z.
Complete step-by-step answer:
We are given that iz4+1=0i{{z}^{4}}+1=0, we have to find the value of z. Let us consider the expression given in the question.
iz4+1=0i{{z}^{4}}+1=0
By subtracting 1 from both the sides of the above equation, we get,
iz4=1i{{z}^{4}}=-1
z4=1i{{z}^{4}}=\dfrac{-1}{i}
By multiplying i in the numerator and denominator of the RHS of the above equation, we get,
z4=ii2{{z}^{4}}=\dfrac{-i}{{{i}^{2}}}
We know that i=1 or i2=1i=\sqrt{-1}\text{ or }{{i}^{2}}=-1. By using this, we get,
z4=i{{z}^{4}}=i
We can write the above equation as,
z4=0+i(1){{z}^{4}}=0+i\left( 1 \right)
We know that,
cos(π2)=0 and sin(π2)=1\cos \left( \dfrac{\pi }{2} \right)=0\text{ and }\sin \left( \dfrac{\pi }{2} \right)=1
By using these, we can write the above equation as,
z4=cos(π2)+isin(π2){{z}^{4}}=\cos \left( \dfrac{\pi }{2} \right)+i\sin \left( \dfrac{\pi }{2} \right)
By raising both the sides by the power of 14\dfrac{1}{4}, we get,
z=(cosπ2+isin(π2))14z={{\left( \cos \dfrac{\pi }{2}+i\sin \left( \dfrac{\pi }{2} \right) \right)}^{\dfrac{1}{4}}}
According to De Moivre’s theorem, we know that (cosθ+isinθ)n=cosnθ+isinnθ{{\left( \cos \theta +i\sin \theta \right)}^{n}}=\cos n\theta +i\sin n\theta . By using this in the above equation, we get,
z=cos14(π2)+isin14(π2)z=\cos \dfrac{1}{4}\left( \dfrac{\pi }{2} \right)+i\sin \dfrac{1}{4}\left( \dfrac{\pi }{2} \right)
So, we get,
z=cosπ8+isinπ8z=\cos \dfrac{\pi }{8}+i\sin \dfrac{\pi }{8}
Therefore, option (b) is the right answer.

Note: In this question, students can cross-check their answer by substituting z=cosπ8+isinπ8z=\cos \dfrac{\pi }{8}+i\sin \dfrac{\pi }{8} and checking if LHS = RHS as follows:
Let us consider the given equation
iz4+1=0i{{z}^{4}}+1=0
By substituting z=cosπ8+isinπ8z=\cos \dfrac{\pi }{8}+i\sin \dfrac{\pi }{8}, we get,
i(cosπ8+isinπ8)4+1=0i{{\left( \cos \dfrac{\pi }{8}+i\sin \dfrac{\pi }{8} \right)}^{4}}+1=0
By using Demoivre’s theorem, we get,
i(cos4π8+isin4π8)+1=0i\left( \cos \dfrac{4\pi }{8}+i\sin \dfrac{4\pi }{8} \right)+1=0
i(cosπ2+isinπ8)+1=0i\left( \cos \dfrac{\pi }{2}+i\sin \dfrac{\pi }{8} \right)+1=0
i(0+i(1))+1=0i\left( 0+i\left( 1 \right) \right)+1=0
i2+1=0{{i}^{2}}+1=0
We know that,
i2=1{{i}^{2}}=-1
So, we get,
– 1 + 1 = 0
0 = 0
As we have got LHS = RHS. So, our answer is correct.