Solveeit Logo

Question

Mathematics Question on Conic sections

If an ellipse the distance between the foci is 8 and the distance between the directrices is 25. The length of the minor axis is

A

10210\sqrt{2}

B

20220\sqrt{2}

C

30230\sqrt{2}

D

none of these.

Answer

10210\sqrt{2}

Explanation

Solution

Let the ellipse be x2a2+y2b2=1\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} = 1 Distance between foci =2ae=8= 2ae = 8 ae=4\Rightarrow ae = 4 Distance between directrices =2ae=25= \frac{2a}{e} = 25 (ar)(2ae)=4×25\therefore \left(ar\right)\left(\frac{2a}{e}\right) = 4\times25 2a2=100\Rightarrow 2a^{2} = 100 a2=50\Rightarrow a^{2} = 50 a=52\Rightarrow a= 5\sqrt{2} 2a=152 \Rightarrow 2a= 15\sqrt{2} \therefore length of major axis =102= 10\sqrt{2}