Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If an angle θ\theta is divided into 2 parts A and B such that AB=kA - B = k and A+B=θA + B = \theta and tan A:tanB=k:1A : tan \,B = k :\, 1, then the value of sin k is :

A

k+1k1sinθ\frac{k+1}{k-1} sin\,\theta

B

kk+1sinθ\frac{k}{k+1} sin\,\theta

C

k1k+1sinθ\frac{k-1}{k+1} sin\,\theta

D

None of these

Answer

k1k+1sinθ\frac{k-1}{k+1} sin\,\theta

Explanation

Solution

Given an angle θ\theta which is divided into two parts A and B such that AB=kA - B = k and A+B=θA + B = \theta , and tan A : tan B = k : 1, i.e. tanAtanB=k1\frac{tan\,A}{tan\,B} = \frac{k}{1} tanA+tanBtanAtanB=k+1k1\Rightarrow \frac{tan\,A+tan\,B}{tan\,A-tan\,B} = \frac{k+1}{k-1} (by componendo and dividendo) sin(A+B)sin(AB)=k+1k1sinθsink=k+1k1\Rightarrow\quad \frac{sin \left(A + B\right)}{sin \left(A - B\right)} = \frac{k+1}{k-1} \quad\Rightarrow \frac{sin\,\theta}{sin\,k} = \frac{k+1}{k-1} sink=k+1k1sinθ\Rightarrow \quad sin\,k = \frac{k+1}{k-1} sin\,\theta