Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If Amp (z1z+1)=π3( \frac {z-1} {z+1})= \frac {\pi} {3}, then zz represents a point on

A

a pair of lines

B

a straight line

C

a circle

D

none of these

Answer

a circle

Explanation

Solution

Amp(z1z+1)=π3Amp \left(\frac{z-1}{z+1}\right)=\frac{\pi}{3} Amp(x1+iyx+1+iy)=π3\Rightarrow Amp\left(\frac{x-1+iy}{x+1+iy}\right)=\frac{\pi}{3} tan1yx1tan1yx+1=π3\Rightarrow tan^{-1} \frac{y}{x-1}-tan^{-1} \frac{y}{x+1}=\frac{\pi}{3} tan1yx1yx+11+y2x21=π3\Rightarrow tan^{-1} \frac{\frac{y}{x-1}-\frac{y}{x+1}}{1+\frac{y^{2}}{x^{2}-1}}=\frac{\pi}{3} y[x+1x+1]x2+y21=tanπ3=3\Rightarrow \frac{y\left[x+1-x+1\right]}{x^{2}+y^{2}-1}=tan \frac{\pi}{3}=\sqrt{3} 2yx2+y21=3\Rightarrow \frac{2y}{x^{2}+y^{2}-1}=\sqrt{3} x2+y21=2y3\Rightarrow x^{2}+y^{2}-1=\frac{2y}{\sqrt{3}} x2+y22y31=0\Rightarrow x^{2}+y^{2}-\frac{2y}{\sqrt{3}}-1=0 which is a circle