Question
Question: If \(\alpha,\beta\) and \(\gamma\) are the roots of the equations \(x^{3} + px + q = 0\) then value ...
If α,β and γ are the roots of the equations x3+px+q=0 then value of the determinant αβγβγαγαβ is
A
p
B
q
C
p2−2q
D
0
Answer
0
Explanation
Solution
Sinceα,β,γ are the roots of x3+px+q=0,
∴α+β+γ=0
\alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{matrix} \right|$$ Applying $R_{1} \rightarrow R_{1} + R_{2} + R_{3}$, We get, $\left| \begin{matrix} \alpha + \beta + \gamma & \alpha + \beta + \gamma & \alpha + \beta + \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{matrix} \right|$ = $\left| \begin{matrix} 0 & 0 & 0 \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{matrix} \right| = 0$