Solveeit Logo

Question

Question: If \(\alpha,\beta\) and \(\gamma\) are the roots of the equations \(x^{3} + px + q = 0\) then value ...

If α,β\alpha,\beta and γ\gamma are the roots of the equations x3+px+q=0x^{3} + px + q = 0 then value of the determinant αβγβγαγαβ\left| \begin{matrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{matrix} \right| is

A

p

B

q

C

p22qp^{2} - 2q

D

0

Answer

0

Explanation

Solution

Sinceα,β,γ\alpha,\beta,\gamma are the roots of x3+px+q=0x^{3} + px + q = 0,

α+β+γ=0\therefore\alpha + \beta + \gamma = 0

\alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{matrix} \right|$$ Applying $R_{1} \rightarrow R_{1} + R_{2} + R_{3}$, We get, $\left| \begin{matrix} \alpha + \beta + \gamma & \alpha + \beta + \gamma & \alpha + \beta + \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{matrix} \right|$ = $\left| \begin{matrix} 0 & 0 & 0 \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{matrix} \right| = 0$