Question
Question: If \(\alpha\)and \(\beta\)are the eccentric angles of the extremities of a focal chord of an ellipse...
If αand βare the eccentric angles of the extremities of a focal chord of an ellipse, then the eccentricity of the ellipse is
A
cos(α−β)cosα+cosβ
B
sin(α−β)sinα−sinβ
C
cos(α−β)cosα−cosβ
D
sin(α+β)sinα+sinβ
Answer
sin(α+β)sinα+sinβ
Explanation
Solution
The equation of a chord joining points having eccentric angles
α and β is given by
axcos(2α+β)+bysin(2α+β)=cos(2α−β)
If it passes through (ae,0) then ecos(2α+β)=cos(2α−β)
⇒ e=cos(2α+β)cos(2α−β)⇒e=2sin(2α+β)cos(2α+β)2sin(2α+β)cos(2α−β) ⇒
e=sin(α+β)sinα+sinβ