Solveeit Logo

Question

Question: If \(\alpha\)and \(\beta\)are the eccentric angles of the extremities of a focal chord of an ellipse...

If α\alphaand β\betaare the eccentric angles of the extremities of a focal chord of an ellipse, then the eccentricity of the ellipse is

A

cosα+cosβcos(αβ)\frac{\cos\alpha + \cos\beta}{\cos(\alpha - \beta)}

B

sinαsinβsin(αβ)\frac{\sin\alpha - \sin\beta}{\sin(\alpha - \beta)}

C

cosαcosβcos(αβ)\frac{\cos\alpha - \cos\beta}{\cos(\alpha - \beta)}

D

sinα+sinβsin(α+β)\frac{\sin\alpha + \sin\beta}{\sin(\alpha + \beta)}

Answer

sinα+sinβsin(α+β)\frac{\sin\alpha + \sin\beta}{\sin(\alpha + \beta)}

Explanation

Solution

The equation of a chord joining points having eccentric angles

α\alpha and β\beta is given by

xacos(α+β2)+ybsin(α+β2)=cos(αβ2)\frac{\mathbf{x}}{\mathbf{a}}\mathbf{\cos}\left( \frac{\mathbf{\alpha + \beta}}{\mathbf{2}} \right)\mathbf{+}\frac{\mathbf{y}}{\mathbf{b}}\mathbf{\sin}\left( \frac{\mathbf{\alpha + \beta}}{\mathbf{2}} \right)\mathbf{=}\mathbf{\cos}\left( \frac{\mathbf{\alpha}\mathbf{-}\mathbf{\beta}}{\mathbf{2}} \right)

If it passes through (ae,0)(ae,0) then ecos(α+β2)=cos(αβ2)e\cos\left( \frac{\alpha + \beta}{2} \right) = \cos\left( \frac{\alpha - \beta}{2} \right)

e=cos(αβ2)cos(α+β2)e = \frac{\cos\left( \frac{\alpha - \beta}{2} \right)}{\cos\left( \frac{\alpha + \beta}{2} \right)}e=2sin(α+β2)cos(αβ2)2sin(α+β2)cos(α+β2)e = \frac{2\sin\left( \frac{\alpha + \beta}{2} \right)\cos\left( \frac{\alpha - \beta}{2} \right)}{2\sin\left( \frac{\alpha + \beta}{2} \right)\cos\left( \frac{\alpha + \beta}{2} \right)}

e=sinα+sinβsin(α+β)e = \frac{\sin\alpha + \sin\beta}{\sin(\alpha + \beta)}