Solveeit Logo

Question

Question: If $\alpha_1, \beta_1$ are the roots of the equation $ax^2 + bx + c = 0$ and $\alpha_2, \beta_2$ are...

If α1,β1\alpha_1, \beta_1 are the roots of the equation ax2+bx+c=0ax^2 + bx + c = 0 and α2,β2\alpha_2, \beta_2 are the roots of the equation px2+qx+r=0px^2 + qx + r = 0 if a,ba, b and cc are in GP as well as α1,β1,α2,β2\alpha_1, \beta_1, \alpha_2, \beta_2 are in GP, then p,qp, q and rr are in

A

arithmetic progression

B

harmonic progression

C

geometric progression

D

None of these

Answer

geometric progression

Explanation

Solution

Let the first quadratic equation be ax2+bx+c=0ax^2 + bx + c = 0 with roots α1,β1\alpha_1, \beta_1.

It is given that a,b,ca, b, c are in GP. Let the common ratio be kk. Then b=akb = ak and c=ak2c = ak^2. Since a,b,ca, b, c are coefficients of a quadratic equation, a0a \neq 0. The equation becomes ax2+akx+ak2=0ax^2 + akx + ak^2 = 0. Dividing by aa, we get x2+kx+k2=0x^2 + kx + k^2 = 0. The roots α1,β1\alpha_1, \beta_1 satisfy: α1+β1=k\alpha_1 + \beta_1 = -k α1β1=k2\alpha_1 \beta_1 = k^2

The roots of x2+kx+k2=0x^2 + kx + k^2 = 0 are given by the quadratic formula: x=k±k24k22=k±3k22=k±ik32x = \frac{-k \pm \sqrt{k^2 - 4k^2}}{2} = \frac{-k \pm \sqrt{-3k^2}}{2} = \frac{-k \pm ik\sqrt{3}}{2}. These roots are k(1+i32)k \left(\frac{-1 + i\sqrt{3}}{2}\right) and k(1i32)k \left(\frac{-1 - i\sqrt{3}}{2}\right). Let ω=ei2π/3=1+i32\omega = e^{i2\pi/3} = \frac{-1 + i\sqrt{3}}{2} and ω2=ei4π/3=1i32\omega^2 = e^{i4\pi/3} = \frac{-1 - i\sqrt{3}}{2}. Note that ω3=1\omega^3 = 1 and 1+ω+ω2=01+\omega+\omega^2 = 0. The roots α1,β1\alpha_1, \beta_1 are {kω,kω2}\{k\omega, k\omega^2\}.

It is given that α1,β1,α2,β2\alpha_1, \beta_1, \alpha_2, \beta_2 are in GP. Let the common ratio of this GP be mm. The terms are α1,α1m,α1m2,α1m3\alpha_1, \alpha_1 m, \alpha_1 m^2, \alpha_1 m^3. So, β1=α1m\beta_1 = \alpha_1 m, α2=α1m2\alpha_2 = \alpha_1 m^2, β2=α1m3\beta_2 = \alpha_1 m^3.

From β1=α1m\beta_1 = \alpha_1 m, the common ratio m=β1/α1m = \beta_1 / \alpha_1. If α1=kω\alpha_1 = k\omega and β1=kω2\beta_1 = k\omega^2, then m=kω2kω=ωm = \frac{k\omega^2}{k\omega} = \omega. If α1=kω2\alpha_1 = k\omega^2 and β1=kω\beta_1 = k\omega, then m=kωkω2=1ω=ω2m = \frac{k\omega}{k\omega^2} = \frac{1}{\omega} = \omega^2. So the common ratio mm of the GP of roots is either ω\omega or ω2\omega^2.

Case 1: m=ωm = \omega. Let α1=kω\alpha_1 = k\omega. Then β1=α1m=kωω=kω2\beta_1 = \alpha_1 m = k\omega \cdot \omega = k\omega^2. This is consistent. The terms of the GP are: α1=kω\alpha_1 = k\omega β1=kω2\beta_1 = k\omega^2 α2=α1m2=kωω2=kω3=k\alpha_2 = \alpha_1 m^2 = k\omega \cdot \omega^2 = k\omega^3 = k β2=α1m3=kωω3=kω4=kω\beta_2 = \alpha_1 m^3 = k\omega \cdot \omega^3 = k\omega^4 = k\omega The roots of the second equation px2+qx+r=0px^2 + qx + r = 0 are α2=k\alpha_2 = k and β2=kω\beta_2 = k\omega. Sum of roots: α2+β2=k+kω=k(1+ω)=k(ω2)\alpha_2 + \beta_2 = k + k\omega = k(1+\omega) = k(-\omega^2). Product of roots: α2β2=kkω=k2ω\alpha_2 \beta_2 = k \cdot k\omega = k^2\omega.

From the equation px2+qx+r=0px^2 + qx + r = 0: α2+β2=q/p\alpha_2 + \beta_2 = -q/p α2β2=r/p\alpha_2 \beta_2 = r/p So, q/p=kω2    q/p=kω2    q=pkω2-q/p = -k\omega^2 \implies q/p = k\omega^2 \implies q = pk\omega^2. And r/p=k2ω    r=pk2ωr/p = k^2\omega \implies r = pk^2\omega.

We check if p,q,rp, q, r are in GP, i.e., q2=prq^2 = pr. q2=(pkω2)2=p2k2ω4=p2k2ωq^2 = (pk\omega^2)^2 = p^2k^2\omega^4 = p^2k^2\omega (since ω4=ω3ω=ω\omega^4 = \omega^3 \cdot \omega = \omega). pr=p(pk2ω)=p2k2ωpr = p(pk^2\omega) = p^2k^2\omega. Since q2=prq^2 = pr, p,q,rp, q, r are in GP.

Case 2: m=ω2m = \omega^2. Let α1=kω2\alpha_1 = k\omega^2. Then β1=α1m=kω2ω2=kω4=kω\beta_1 = \alpha_1 m = k\omega^2 \cdot \omega^2 = k\omega^4 = k\omega. This is consistent. The terms of the GP are: α1=kω2\alpha_1 = k\omega^2 β1=kω\beta_1 = k\omega α2=α1m2=kω2(ω2)2=kω6=k(ω3)2=k\alpha_2 = \alpha_1 m^2 = k\omega^2 \cdot (\omega^2)^2 = k\omega^6 = k(\omega^3)^2 = k β2=α1m3=kω2(ω2)3=kω8=k(ω3)2ω2=kω2\beta_2 = \alpha_1 m^3 = k\omega^2 \cdot (\omega^2)^3 = k\omega^8 = k(\omega^3)^2 \cdot \omega^2 = k\omega^2 The roots of the second equation px2+qx+r=0px^2 + qx + r = 0 are α2=k\alpha_2 = k and β2=kω2\beta_2 = k\omega^2. Sum of roots: α2+β2=k+kω2=k(1+ω2)=k(ω)\alpha_2 + \beta_2 = k + k\omega^2 = k(1+\omega^2) = k(-\omega). Product of roots: α2β2=kkω2=k2ω2\alpha_2 \beta_2 = k \cdot k\omega^2 = k^2\omega^2.

From the equation px2+qx+r=0px^2 + qx + r = 0: q/p=kω    q/p=kω    q=pkω-q/p = -k\omega \implies q/p = k\omega \implies q = pk\omega. r/p=k2ω2    r=pk2ω2r/p = k^2\omega^2 \implies r = pk^2\omega^2.

We check if p,q,rp, q, r are in GP, i.e., q2=prq^2 = pr. q2=(pkω)2=p2k2ω2q^2 = (pk\omega)^2 = p^2k^2\omega^2. pr=p(pk2ω2)=p2k2ω2pr = p(pk^2\omega^2) = p^2k^2\omega^2. Since q2=prq^2 = pr, p,q,rp, q, r are in GP.

In both possible cases for the common ratio of the GP of roots, we find that p,q,rp, q, r are in GP.