Solveeit Logo

Question

Question: If $\alpha_1, \alpha_1, \alpha_2, \alpha_3,........\alpha_n$ are the roots of equation $x^{n+1}-5x^2...

If α1,α1,α2,α3,........αn\alpha_1, \alpha_1, \alpha_2, \alpha_3,........\alpha_n are the roots of equation xn+15x2+6x3=0x^{n+1}-5x^2+6x-3=0 and (α1α2)(α1α3)(α1α4)....(α1αn)=k(\alpha_1 - \alpha_2)(\alpha_1 - \alpha_3)(\alpha_1 - \alpha_4)....(\alpha_1 - \alpha_n)=k, then n(n+1)α1n12kn(n+1)\alpha_1^{n-1}-2k equals

A

5

B

10

C

12

D

5

Answer

10

Explanation

Solution

Let the given polynomial be P(x)=xn+15x2+6x3P(x) = x^{n+1}-5x^2+6x-3. The roots of the equation P(x)=0P(x)=0 are given as α1,α1,α2,α3,,αn\alpha_1, \alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n. This means α1\alpha_1 is a root with multiplicity at least 2, and α2,,αn\alpha_2, \ldots, \alpha_n are the other n1n-1 roots. The total number of roots is 2+(n1)=n+12 + (n-1) = n+1, which matches the degree of the polynomial P(x)P(x).

Since α1\alpha_1 is a root of P(x)P(x) with multiplicity at least 2, it must satisfy P(α1)=0P(\alpha_1)=0 and P(α1)=0P'(\alpha_1)=0. P(x)=xn+15x2+6x3P(x) = x^{n+1}-5x^2+6x-3 P(x)=ddx(xn+15x2+6x3)=(n+1)xn10x+6P'(x) = \frac{d}{dx}(x^{n+1}-5x^2+6x-3) = (n+1)x^n - 10x + 6.

Since P(α1)=0P'(\alpha_1)=0, we have (n+1)α1n10α1+6=0(n+1)\alpha_1^n - 10\alpha_1 + 6 = 0.

Let the roots of P(x)P(x) be r1,r2,,rn+1r_1, r_2, \ldots, r_{n+1}. In this case, r1=α1,r2=α1,r3=α2,,rn+1=αnr_1=\alpha_1, r_2=\alpha_1, r_3=\alpha_2, \ldots, r_{n+1}=\alpha_n. The polynomial can be written as P(x)=(xr1)(xr2)(xrn+1)P(x) = (x-r_1)(x-r_2)\cdots(x-r_{n+1}). P(x)=(xα1)(xα1)(xα2)(xαn)P(x) = (x-\alpha_1)(x-\alpha_1)(x-\alpha_2)\cdots(x-\alpha_n). Let Q(x)=(xα2)(xα3)(xαn)Q(x) = (x-\alpha_2)(x-\alpha_3)\cdots(x-\alpha_n). Then P(x)=(xα1)2Q(x)P(x) = (x-\alpha_1)^2 Q(x).

We are given k=(α1α2)(α1α3)(α1α4)....(α1αn)k = (\alpha_1 - \alpha_2)(\alpha_1 - \alpha_3)(\alpha_1 - \alpha_4)....(\alpha_1 - \alpha_n). This expression is equal to Q(α1)Q(\alpha_1). So, k=Q(α1)k = Q(\alpha_1).

Now, let's consider the derivative of P(x)P(x): P(x)=ddx[(xα1)2Q(x)]=2(xα1)Q(x)+(xα1)2Q(x)P'(x) = \frac{d}{dx}[(x-\alpha_1)^2 Q(x)] = 2(x-\alpha_1)Q(x) + (x-\alpha_1)^2 Q'(x). P(x)=(xα1)[2Q(x)+(xα1)Q(x)]P'(x) = (x-\alpha_1)[2Q(x) + (x-\alpha_1)Q'(x)].

Since α1\alpha_1 is a root of P(x)P(x) with multiplicity at least 2, P(α1)=0P'(\alpha_1)=0, which is confirmed by the expression for P(x)P'(x): P(α1)=(α1α1)[2Q(α1)+(α1α1)Q(α1)]=0P'(\alpha_1) = (\alpha_1-\alpha_1)[2Q(\alpha_1) + (\alpha_1-\alpha_1)Q'(\alpha_1)] = 0.

Now, let's consider the second derivative of P(x)P(x): P(x)=ddx[(xα1)[2Q(x)+(xα1)Q(x)]]P''(x) = \frac{d}{dx}[(x-\alpha_1)[2Q(x) + (x-\alpha_1)Q'(x)]]. Let R(x)=2Q(x)+(xα1)Q(x)R(x) = 2Q(x) + (x-\alpha_1)Q'(x). Then P(x)=(xα1)R(x)P'(x) = (x-\alpha_1)R(x). P(x)=1R(x)+(xα1)R(x)P''(x) = 1 \cdot R(x) + (x-\alpha_1)R'(x). P(x)=[2Q(x)+(xα1)Q(x)]+(xα1)[2Q(x)+Q(x)+(xα1)Q(x)]P''(x) = [2Q(x) + (x-\alpha_1)Q'(x)] + (x-\alpha_1)[2Q'(x) + Q'(x) + (x-\alpha_1)Q''(x)]. P(x)=2Q(x)+(xα1)Q(x)+(xα1)[3Q(x)+(xα1)Q(x)]P''(x) = 2Q(x) + (x-\alpha_1)Q'(x) + (x-\alpha_1)[3Q'(x) + (x-\alpha_1)Q''(x)]. P(x)=2Q(x)+4(xα1)Q(x)+(xα1)2Q(x)P''(x) = 2Q(x) + 4(x-\alpha_1)Q'(x) + (x-\alpha_1)^2Q''(x).

Now, evaluate P(x)P''(x) at x=α1x=\alpha_1: P(α1)=2Q(α1)+4(α1α1)Q(α1)+(α1α1)2Q(α1)P''(\alpha_1) = 2Q(\alpha_1) + 4(\alpha_1-\alpha_1)Q'(\alpha_1) + (\alpha_1-\alpha_1)^2Q''(\alpha_1). P(α1)=2Q(α1)+0+0=2Q(α1)P''(\alpha_1) = 2Q(\alpha_1) + 0 + 0 = 2Q(\alpha_1). Since k=Q(α1)k = Q(\alpha_1), we have P(α1)=2kP''(\alpha_1) = 2k.

Now, let's compute the second derivative of P(x)P(x) from its given form: P(x)=(n+1)xn10x+6P'(x) = (n+1)x^n - 10x + 6 P(x)=ddx((n+1)xn10x+6)=(n+1)nxn110P''(x) = \frac{d}{dx}((n+1)x^n - 10x + 6) = (n+1)nx^{n-1} - 10.

Evaluate P(x)P''(x) at x=α1x=\alpha_1: P(α1)=(n+1)nα1n110P''(\alpha_1) = (n+1)n\alpha_1^{n-1} - 10.

Equating the two expressions for P(α1)P''(\alpha_1): (n+1)nα1n110=2k(n+1)n\alpha_1^{n-1} - 10 = 2k. We are asked to find the value of n(n+1)α1n12kn(n+1)\alpha_1^{n-1}-2k. Rearranging the equation: n(n+1)α1n12k=10n(n+1)\alpha_1^{n-1} - 2k = 10.

The value of n(n+1)α1n12kn(n+1)\alpha_1^{n-1}-2k is 10.