Question
Question: If $\alpha_1, \alpha_1, \alpha_2, \alpha_3,........\alpha_n$ are the roots of equation $x^{n+1}-5x^2...
If α1,α1,α2,α3,........αn are the roots of equation xn+1−5x2+6x−3=0 and (α1−α2)(α1−α3)(α1−α4)....(α1−αn)=k, then n(n+1)α1n−1−2k equals

5
10
12
5
10
Solution
Let the given polynomial be P(x)=xn+1−5x2+6x−3. The roots of the equation P(x)=0 are given as α1,α1,α2,α3,…,αn. This means α1 is a root with multiplicity at least 2, and α2,…,αn are the other n−1 roots. The total number of roots is 2+(n−1)=n+1, which matches the degree of the polynomial P(x).
Since α1 is a root of P(x) with multiplicity at least 2, it must satisfy P(α1)=0 and P′(α1)=0. P(x)=xn+1−5x2+6x−3 P′(x)=dxd(xn+1−5x2+6x−3)=(n+1)xn−10x+6.
Since P′(α1)=0, we have (n+1)α1n−10α1+6=0.
Let the roots of P(x) be r1,r2,…,rn+1. In this case, r1=α1,r2=α1,r3=α2,…,rn+1=αn. The polynomial can be written as P(x)=(x−r1)(x−r2)⋯(x−rn+1). P(x)=(x−α1)(x−α1)(x−α2)⋯(x−αn). Let Q(x)=(x−α2)(x−α3)⋯(x−αn). Then P(x)=(x−α1)2Q(x).
We are given k=(α1−α2)(α1−α3)(α1−α4)....(α1−αn). This expression is equal to Q(α1). So, k=Q(α1).
Now, let's consider the derivative of P(x): P′(x)=dxd[(x−α1)2Q(x)]=2(x−α1)Q(x)+(x−α1)2Q′(x). P′(x)=(x−α1)[2Q(x)+(x−α1)Q′(x)].
Since α1 is a root of P(x) with multiplicity at least 2, P′(α1)=0, which is confirmed by the expression for P′(x): P′(α1)=(α1−α1)[2Q(α1)+(α1−α1)Q′(α1)]=0.
Now, let's consider the second derivative of P(x): P′′(x)=dxd[(x−α1)[2Q(x)+(x−α1)Q′(x)]]. Let R(x)=2Q(x)+(x−α1)Q′(x). Then P′(x)=(x−α1)R(x). P′′(x)=1⋅R(x)+(x−α1)R′(x). P′′(x)=[2Q(x)+(x−α1)Q′(x)]+(x−α1)[2Q′(x)+Q′(x)+(x−α1)Q′′(x)]. P′′(x)=2Q(x)+(x−α1)Q′(x)+(x−α1)[3Q′(x)+(x−α1)Q′′(x)]. P′′(x)=2Q(x)+4(x−α1)Q′(x)+(x−α1)2Q′′(x).
Now, evaluate P′′(x) at x=α1: P′′(α1)=2Q(α1)+4(α1−α1)Q′(α1)+(α1−α1)2Q′′(α1). P′′(α1)=2Q(α1)+0+0=2Q(α1). Since k=Q(α1), we have P′′(α1)=2k.
Now, let's compute the second derivative of P(x) from its given form: P′(x)=(n+1)xn−10x+6 P′′(x)=dxd((n+1)xn−10x+6)=(n+1)nxn−1−10.
Evaluate P′′(x) at x=α1: P′′(α1)=(n+1)nα1n−1−10.
Equating the two expressions for P′′(α1): (n+1)nα1n−1−10=2k. We are asked to find the value of n(n+1)α1n−1−2k. Rearranging the equation: n(n+1)α1n−1−2k=10.
The value of n(n+1)α1n−1−2k is 10.