Solveeit Logo

Question

Question: If \(\alpha \neq \beta\), but \(\alpha^{2} = 5\alpha - 3,\beta^{2} = 5\beta - 3\), then the equation...

If αβ\alpha \neq \beta, but α2=5α3,β2=5β3\alpha^{2} = 5\alpha - 3,\beta^{2} = 5\beta - 3, then the equation whose roots are αβ\frac{\alpha}{\beta} and βα\frac{\beta}{\alpha} is

A

x25x3=0x^{2} - 5x - 3 = 0

B

3x219x+3=03x^{2} - 19x + 3 = 0

C

3x2+12x+3=03x^{2} + 12x + 3 = 0

D

None of these

Answer

3x219x+3=03x^{2} - 19x + 3 = 0

Explanation

Solution

S=αβ+βα=α2+β2αβ=5α3+5β3αβS = \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^{2} + \beta^{2}}{\alpha\beta} = \frac{5\alpha - 3 + 5\beta - 3}{\alpha\beta} [α2=5α3β2=5β3]\left\lbrack \begin{aligned} & \because\alpha^{2} = 5\alpha - 3 \\ & \beta^{2} = 5\beta - 3 \end{aligned} \right\rbrack

S=5(α+β)6αβS = \frac{5(\alpha + \beta) - 6}{\alpha\beta}, p=αββα=1p = \frac{\alpha}{\beta} \cdot \frac{\beta}{\alpha} = 1p=1p = 1. α, β are roots of x25x+3=0x^{2} - 5x + 3 = 0. Therefore α+β=5\alpha + \beta = 5, αβ=3\alpha\beta = 3

S=5(5)63=193S = \frac{5(5) - 6}{3} = \frac{19}{3}

x2193x+1=0x^{2} - \frac{19}{3}x + 1 = 03x219x+3=03x^{2} - 19x + 3 = 0