Question
Question: If \(\alpha \neq \beta\), but \(\alpha^{2} = 5\alpha - 3,\beta^{2} = 5\beta - 3\), then the equation...
If α=β, but α2=5α−3,β2=5β−3, then the equation whose roots are βα and αβ is
A
x2−5x−3=0
B
3x2−19x+3=0
C
3x2+12x+3=0
D
None of these
Answer
3x2−19x+3=0
Explanation
Solution
S=βα+αβ=αβα2+β2=αβ5α−3+5β−3 [∵α2=5α−3β2=5β−3]
S=αβ5(α+β)−6, p=βα⋅αβ=1 ⇒ p=1. α, β are roots of x2−5x+3=0. Therefore α+β=5, αβ=3
S=35(5)−6=319
∵ x2−319x+1=0 ⇒ 3x2−19x+3=0