Solveeit Logo

Question

Mathematics Question on Properties of Determinants

If αa\alpha \neq a, βb\beta \neq b, γc\gamma \neq c and αbc aβc abγ=0, \begin{vmatrix} \alpha & b & c \\\ a & \beta & c \\\ a & b & \gamma \end{vmatrix} = 0, then aαa+bβb+γγc\frac{a}{\alpha - a} + \frac{b}{\beta - b} + \frac{\gamma}{\gamma - c} is equal to:

A

2

B

3

C

0

D

1

Answer

0

Explanation

Solution

Given determinant:
αbc aβc abγ=0.\begin{vmatrix} \alpha & b & c \\\ a & \beta & c \\\ a & b & \gamma \end{vmatrix} = 0.

Expanding the determinant along the first row:
α(βγbc)b(aγac)+c(abaβ)=0.\alpha (\beta \cdot \gamma - b \cdot c) - b (a \cdot \gamma - a \cdot c) + c (a \cdot b - a \cdot \beta) = 0.

Simplifying each term:
α(βγbc)b(aγac)+c(abaβ)=0.\alpha (\beta \gamma - bc) - b (a \gamma - ac) + c (ab - a \beta) = 0.

Rearranging terms:
αβγabcabγ+abc+acbaβc=0.\alpha \beta \gamma - abc - ab \gamma + abc + ac b - a \beta c = 0.

Given this condition, we proceed to evaluate:
aαa+bβb+γγc.\frac{a}{\alpha - a} + \frac{b}{\beta - b} + \frac{\gamma}{\gamma - c}.

Since the determinant condition implies a linear dependence among the rows, substituting values and rearranging terms shows that:
aαa+bβb+γγc=0.\frac{a}{\alpha - a} + \frac{b}{\beta - b} + \frac{\gamma}{\gamma - c} = 0.

Therefore:
0.0.