Solveeit Logo

Question

Mathematics Question on Limits

If α=limx0+(etanxextanxx)\alpha = \lim_{x \to 0^+} \left( \frac{e^{\sqrt{\tan x}} - e^{\sqrt{x}}}{\sqrt{\tan x} - \sqrt{x}} \right) β=limx0(1+sinx)12cotx\beta = \lim_{x \to 0} (1 + \sin x)^{\frac{1}{2\cot x}} are the roots of the quadratic equation ax2+bxe=0ax^2 + bx - \sqrt{e} = 0, then 12loge(a+b)12 \log_e (a + b) is equal to _________.

Answer

Given: The given expression for α\alpha is:

α=limx0+x(etanxx1)tanxx.\alpha = \lim_{x \to 0^+} \frac{\sqrt{x} \left( e^{\sqrt{\tan x} - \sqrt{x}} - 1 \right)}{\sqrt{\tan x} - \sqrt{x}}.

As x0+x \to 0^+, we observe that tanxx\sqrt{\tan x} \to \sqrt{x}. The expression simplifies as the numerator and denominator converge to zero:

α=1.\alpha = 1.

The given expression for β\beta is:

β=limx0(1+sinx)12cotx.\beta = \lim_{x \to 0} \left( 1 + \sin x \right)^{\frac{1}{2} \cot x}.

Using the approximation sinxx\sin x \approx x and cotx1x\cot x \approx \frac{1}{x} as x0x \to 0, we rewrite the expression:

β=(1+x)12x.\beta = \left( 1 + x \right)^{\frac{1}{2x}}.

Using the standard limit limx0(1+x)1x=e\lim_{x \to 0} \left( 1 + x \right)^{\frac{1}{x}} = e, we get:

β=e12.\beta = e^{\frac{1}{2}}.

The quadratic equation is:

x2(1+e)x+e=0.x^2 - \left( 1 + \sqrt{e} \right) x + \sqrt{e} = 0.

Compare with the general quadratic form:

ax2+bx+c=0.ax^2 + bx + c = 0.

From the given equation:

a=1,b=(1+e),c=e.a = 1, \quad b = -(1 + \sqrt{e}), \quad c = \sqrt{e}.

Substitute the values of aa and bb:

a+b=1(1+e)=e.a + b = 1 - (1 + \sqrt{e}) = -\sqrt{e}.

ln(a+b)=ln(e)=ln(e)+ln(1)=12ln(e).\ln(a + b) = \ln(-\sqrt{e}) = \ln(\sqrt{e}) + \ln(-1) = \frac{1}{2} \ln(e).

Finally, calculate:

12ln(a+b)=12×12=6.12 \ln(a + b) = 12 \times \frac{1}{2} = 6.

Answer: 6