Question
Mathematics Question on Limits
If α=limx→0+(tanx−xetanx−ex) β=limx→0(1+sinx)2cotx1 are the roots of the quadratic equation ax2+bx−e=0, then 12loge(a+b) is equal to _________.
Given: The given expression for α is:
α=limx→0+tanx−xx(etanx−x−1).
As x→0+, we observe that tanx→x. The expression simplifies as the numerator and denominator converge to zero:
α=1.
The given expression for β is:
β=limx→0(1+sinx)21cotx.
Using the approximation sinx≈x and cotx≈x1 as x→0, we rewrite the expression:
β=(1+x)2x1.
Using the standard limit limx→0(1+x)x1=e, we get:
β=e21.
The quadratic equation is:
x2−(1+e)x+e=0.
Compare with the general quadratic form:
ax2+bx+c=0.
From the given equation:
a=1,b=−(1+e),c=e.
Substitute the values of a and b:
a+b=1−(1+e)=−e.
ln(a+b)=ln(−e)=ln(e)+ln(−1)=21ln(e).
Finally, calculate:
12ln(a+b)=12×21=6.
Answer: 6