Question
Question: If \(\alpha + i\beta = \tan^{- 1}(z),z = x + iy\) and \(\alpha\) is constant, the locus of 'z' is...
If α+iβ=tan−1(z),z=x+iy and α is constant, the locus of 'z' is
A
x2+y2+2xcot2α=1
B
cot2α(x2+y2)=1+x
C
x2+y2+2ytan2α=1
D
x2+y2+2xsin2α=1
Answer
x2+y2+2xcot2α=1
Explanation
Solution
Sol. tan(α+iβ)=x+iy
∴ tan(α−iβ)=x−iy (conjugate), α is a constant and β is known to be eliminated
tan2α=tan(α+iβ+α−iβ)
⇒ tan2α=1−(x2+y2)x+iy+x−iy
⇒ 1−(x2+y2)=2xcot2α
∴ x2+y2+2xcot2α=1.