Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

Ifα,π2<α<π2\alpha,-\frac{\pi}{2}<\alpha<\frac{\pi}{2}is the solution of4cosθ+5sinθ=1 4cos\theta+ 5sin\theta=1then the value of tanαtan\alpha is

A

10106\frac{10-\sqrt10}{6}

B

101012\frac{10-\sqrt10}{12}

C

101012\frac{\sqrt10-10}{12}

D

10106\frac{\sqrt10-10}{6}

Answer

101012\frac{\sqrt10-10}{12}

Explanation

Solution

Step 1. Rewrite the Equation in Terms of tan θ

Given 4 + 5 tanθ\tan θ = secθ\sec θ.

Step 2. Square Both Sides

Squaring both sides to eliminate secθ\sec θ , we get:

24tan2θ+40tanθ+15=024 \tan^2 θ + 40 \tan θ + 15 = 0

Step 3. Solve for tan θ

Solving this quadratic equation, we find:

tanθ=10±1012\tan θ = \frac{-10 \pm \sqrt{10}}{12}

Step 4. Choose the Correct Value Based on Range

Since π2<α<π2-\frac{\pi}{2} < α < \frac{\pi}{2}, we reject tanα=10+1012\tan α = \frac{-10 + \sqrt{10}}{12} and select:

tanα=101012\tan α = \frac{\sqrt{10} - 10}{12}

So, the correct answer is: 101012\frac{\sqrt{10} - 10}{12}