Solveeit Logo

Question

Mathematics Question on Limits

If α=limx0x.2xx1cosx\alpha =\displaystyle\lim_{x\to0} \frac{x.2^{x}-x}{1-\cos x} and β=limx0x.2xx1+x21x2,\beta =\displaystyle\lim_{x\to0} \frac{x.2^{x}-x}{\sqrt{1+x^{2} } - \sqrt{1-x^{2}} } , then

A

α=5β\alpha = 5 \beta

B

α=2β\alpha = 2 \beta

C

β=2α2\beta = 2 \alpha^2

D

β=16α\beta = \frac{1}{6} \alpha

Answer

α=2β\alpha = 2 \beta

Explanation

Solution

Given,
α=limx0x2xx1cosx\alpha=\displaystyle\lim _{x \rightarrow 0} \frac{x \cdot 2^{x}-x}{1-\cos x}
Applying L'Hospital rule
α=limx02x+x2xlog21sinx\alpha=\displaystyle\lim _{x \rightarrow 0} \frac{2^{x}+x \cdot 2^{x} \log 2-1}{\sin x}
Again, applying L'Hospital rule
α=limx02xlog2+2xlog2+x2x(log2)2cosx\alpha=\displaystyle\lim _{x \rightarrow 0} \frac{2^{x} \log 2+2^{x} \log 2+x \cdot 2^{x}(\log 2)^{2}}{\cos x}
α=log2+log2α=2log2\alpha=\log 2+\log 2 \alpha=2 \log 2 \dots(i)
and β=limx0x2xx1+x21x2\beta =\displaystyle\lim _{x \rightarrow 0} \frac{x \cdot 2^{x}-x}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}
=limx02x+x2xlog21(2x21+x2+2x21x2)=\displaystyle\lim _{x \rightarrow 0} \frac{2^{x}+x \cdot 2^{x} \log 2-1}{\left(\frac{2 x}{2 \sqrt{1+x^{2}}}+\frac{2 x}{2 \sqrt{1-x^{2}}}\right)}
(By L'Hospital rule)
Again, applying L'Hospital rule, we get
=limx02xlog2+2xlog2+x2x(log2)21+x2(2x221+x2)]+[1x2+(2x221x2)]=\displaystyle\lim _{x \rightarrow 0} \frac{2^{x} \log 2+2^{x} \log 2+x \cdot 2^{x}(\log 2)^{2}}{ \left.\sqrt{1+x^{2}}-\left(\frac{2 x^{2}}{2 \sqrt{1+x^{2}}}\right)\right] +\left[ \sqrt{1 - x^2} + \left(\frac{2x^2}{2\sqrt{1 - x^2}}\right)\right]}
=2log2(10)+(1+0)=2log22= \frac{2 \log 2}{(1-0)+(1+0)}=\frac{2 \log 2}{2}
β=log2\beta=\log 2 \dots(ii)
By Eqs. (i) and (ii), we get
α=2β\alpha=2 \beta