Solveeit Logo

Question

Mathematics Question on complex numbers

If α\alpha denotes the number of solutions of 1ix=2x|1 - i|^x = 2^x and β=zarg(z)\beta = \frac{|z|}{\arg(z)}, where z=π4(1+i)4(1πiπ+i+πi1+πi),i=1,z = \frac{\pi}{4} (1 + i)^4 \left( \frac{1 - \sqrt{\pi} i}{\sqrt{\pi} + i} + \frac{\sqrt{\pi} - i}{1 + \sqrt{\pi} i} \right), \quad i = \sqrt{-1}, then the distance of the point (α,β)(\alpha, \beta) from the line 4x3y=74x - 3y = 7 is _____

Answer

(2)x=2x    x=0    α=1(\sqrt{2})^x = 2^x \implies x = 0 \implies \alpha = 1

z=π4(1+i)4z = \frac{\pi}{4}(1 + i)^4
=πi2[ππiππ+1+πiπiπ1+π]= \frac{-\pi i}{2} \left[ \sqrt{\frac{\pi - \pi i - \sqrt{\pi}}{\pi + 1}} + \sqrt{\frac{\pi - i - \pi i - \sqrt{\pi}}{1 + \pi}} \right]
=πi2(1+4i+6i2+4i3+1)= \frac{-\pi i}{2} \left( 1 + 4i + 6i^2 + 4i^3 + 1 \right)
=2πiβ=2ππ/2=4= 2\pi i \beta = \frac{2\pi}{\pi/2} = 4

Distance from (1,4)(1, 4) to 4x3y=74x - 3y = 7 will be:

155=3\frac{15}{5} = 3